Frontier Topics in Empirical Economics: Week 12 Discrete Choice Model I

Zibin Huang ${ }^{1}$

${ }^{1}$ College of Business, Shanghai University of Finance and Economics
December 6, 2023

Introduction: Discrete Choice Model

Introduction: Discrete Choice Model

■ In previous lectures, we focus on reduced-form approach

- In the last two lectures, we will give a very brief introduction to Discrete Choice Model
= It considers problems when y is discrete
- DCM stays in the intersection of reduced-form and structural models

Introduction: Discrete Choice Model

- In previous lectures, we focus on reduced-form approach

■ In the last two lectures, we will give a very brief introduction to Discrete Choice Model

- It considers problems when y is discrete
- DCM stays in the intersection of reduced-form and structural models

Introduction: Discrete Choice Model

- In previous lectures, we focus on reduced-form approach
- In the last two lectures, we will give a very brief introduction to Discrete Choice Model
- It considers problems when y is discrete
- DCM stays in the intersection of reduced-form and structural models

Introduction: Discrete Choice Model

- In previous lectures, we focus on reduced-form approach
- In the last two lectures, we will give a very brief introduction to Discrete Choice Model
- It considers problems when y is discrete

■ DCM stays in the intersection of reduced-form and structural models

Introduction: Discrete Choice Model

Introduction: Discrete Choice Model

- You can learn and understand it in both frameworks
- If you understand it in a reduced-form way
- If you understand it in a structural way, it is actually a brand new world

Introduction: Discrete Choice Model

- You can learn and understand it in both frameworks
- If you understand it in a reduced-form way
- Another kind of non-linear regression model
- Harder to interpret, but better than LPM to fit when y is binary
- If you understand it in a structural way, it is actually a brand new world

Introduction: Discrete Choice Model

- You can learn and understand it in both frameworks
- If you understand it in a reduced-form way
- Another kind of non-linear regression model
- Harder to interpret, but better than LPM to fit when y is binary
- If you understand it in a structural way, it is actually a brand new world

Introduction: Discrete Choice Model

- You can learn and understand it in both frameworks
- If you understand it in a reduced-form way
- Another kind of non-linear regression model
- Harder to interpret, but better than LPM to fit when y is binary
- If you understand it in a structural way, it is actually a brand new world

Introduction: Discrete Choice Model

- You can learn and understand it in both frameworks
- If you understand it in a reduced-form way
- Another kind of non-linear regression model
- Harder to interpret, but better than LPM to fit when y is binary

■ If you understand it in a structural way, it is actually a brand new world

- Each parameter is structural parameter of the behavior model
- There is underlying welfare implication

Introduction: Discrete Choice Model

- You can learn and understand it in both frameworks
- If you understand it in a reduced-form way
- Another kind of non-linear regression model
- Harder to interpret, but better than LPM to fit when y is binary
- If you understand it in a structural way, it is actually a brand new world
- Each parameter is structural parameter of the behavior model
- There is underlying welfare implication

Introduction: Discrete Choice Model

- You can learn and understand it in both frameworks
- If you understand it in a reduced-form way
- Another kind of non-linear regression model
- Harder to interpret, but better than LPM to fit when y is binary

■ If you understand it in a structural way, it is actually a brand new world

- Each parameter is structural parameter of the behavior model
- There is underlying welfare implication

Motivating Example: Female Labor Participation

Still remember the example in our first class?

Motivating Example: Female Labor Participation

Still remember the example in our first class?

Motivating Example: Female Labor Participation

Still remember the example in our first class?

- Consider a female labor participation problem
- Utility maximization of the female i

$$
\begin{aligned}
\max & U_{i}\left(c_{i}, \text { chi }_{i}, 1-l_{i}\right)+\epsilon_{i l} \\
\text { s.t. } & c_{i}=w_{i} l_{i}
\end{aligned}
$$

c_{i} : consumption; chij: number of children; l_{i} : labor supply; $\epsilon_{i l}$: unobserved taste shock; w_{i} : wage

Motivating Example: Female Labor Participation

Still remember the example in our first class?

- Consider a female labor participation problem
- Utility maximization of the female i :

$$
\begin{align*}
\max & U_{i}\left(c_{i}, \text { chi }_{i}, 1-l_{i}\right)+\epsilon_{i l} \tag{1}\\
\text { s.t. } & c_{i}=w_{i} l_{i}
\end{align*}
$$

c_{i} : consumption; chij: number of children; l_{i} : labor supply; $\epsilon_{i l}$: unobserved taste shock; w_{i} : wage

Motivating Example: Female Labor Participation

Motivating Example: Female Labor Participation

- Assume that l_{i} is binary (work, not work)
- $I_{i}=1$ if $U(I=1) \geq U(I=0)$

$$
\begin{equation*}
U_{i}\left(w_{i}, \operatorname{chi} i_{i}, 0\right)+\epsilon_{i 1} \geq U_{i}\left(0, c h i_{i}, 1\right)+\epsilon_{i 0} \tag{2}
\end{equation*}
$$

- Then given w_{i}, chi i_{i}, we have a threshold value of $\epsilon_{i 1}-\epsilon_{i 0}$ to have i to choose to work

$$
\begin{align*}
I_{i} & =1 \quad \text { if } \quad \epsilon_{i 0}-\epsilon_{i 1}<\epsilon^{*} \tag{3}\\
\epsilon^{*} & =U_{i}\left(w_{i}, \operatorname{chi}_{i}, 0\right)-U_{i}\left(0, \operatorname{chi}_{i}, 1\right)
\end{align*}
$$

Motivating Example: Female Labor Participation

- Assume that l_{i} is binary (work, not work)
- $I_{i}=1$ if $U(I=1) \geq U(I=0)$:

$$
\begin{equation*}
U_{i}\left(w_{i}, c h i_{i}, 0\right)+\epsilon_{i 1} \geq U_{i}\left(0, c h i_{i}, 1\right)+\epsilon_{i 0} \tag{2}
\end{equation*}
$$

- Then given w_{i}, chi i_{i}, we have a threshold value of $\epsilon_{i 1}-\epsilon_{i 0}$ to have i to choose to work:

$$
\epsilon^{*}=U_{i}\left(w_{i}, c h i_{i}, 0\right)-U_{i}(0, c h i, 1)
$$

Motivating Example: Female Labor Participation

- Assume that l_{i} is binary (work, not work)
- $I_{i}=1$ if $U(I=1) \geq U(I=0)$:

$$
\begin{equation*}
U_{i}\left(w_{i}, c h i_{i}, 0\right)+\epsilon_{i 1} \geq U_{i}\left(0, c h i_{i}, 1\right)+\epsilon_{i 0} \tag{2}
\end{equation*}
$$

- Then given w_{i}, chi i_{i}, we have a threshold value of $\epsilon_{i 1}-\epsilon_{i 0}$ to have i to choose to work:

$$
\begin{align*}
I_{i} & =1 \quad \text { if } \quad \epsilon_{i 0}-\epsilon_{i 1}<\epsilon^{*} \tag{3}\\
\epsilon^{*} & =U_{i}\left(w_{i}, c h i_{i}, 0\right)-U_{i}\left(0, \operatorname{chi}_{i}, 1\right)
\end{align*}
$$

Motivating Example: Female Labor Participation

Motivating Example: Female Labor Participation

- Assume that shock $\epsilon_{i 1}-\epsilon_{i 0}$ has a CDF $F_{\epsilon \mid w, c h i}$
- We have the following working probability for i :

$$
\begin{aligned}
G(w, c h i) & =\operatorname{Pr}(I=1 \mid w, c h i)=\int_{-\infty}^{\epsilon^{*}} d F_{\epsilon \mid w, c h i} \\
& =F_{\epsilon \mid w, c h i}\left(\epsilon^{*}(w, c h i)\right)
\end{aligned}
$$

- Two empirical research approaches for this question

Motivating Example: Female Labor Participation

- Assume that shock $\epsilon_{i 1}-\epsilon_{i 0}$ has a CDF $F_{\epsilon \mid w, c h i}$
- We have the following working probability for i :

$$
\begin{align*}
G(w, c h i) & =\operatorname{Pr}(I=1 \mid w, c h i)=\int_{-\infty}^{\epsilon^{*}} d F_{\epsilon \mid w, c h i} \\
& =F_{\epsilon \mid w, c h i}\left(\epsilon^{*}(w, c h i)\right) \tag{4}
\end{align*}
$$

- Two empirical research approaches for this question

Motivating Example: Female Labor Participation

- Assume that shock $\epsilon_{i 1}-\epsilon_{i 0}$ has a CDF $F_{\epsilon \mid w, c h i}$
- We have the following working probability for i :

$$
\begin{align*}
G(w, c h i) & =\operatorname{Pr}(I=1 \mid w, c h i)=\int_{-\infty}^{\epsilon^{*}} d F_{\epsilon \mid w, c h i} \\
& =F_{\epsilon \mid w, c h i}\left(\epsilon^{*}(w, c h i)\right) \tag{4}
\end{align*}
$$

- Two empirical research approaches for this question

Motivating Example: Female Labor Participation

Now, remind yourself:

Motivating Example: Female Labor Participation

Now, remind yourself:

Motivating Example: Female Labor Participation

Now, remind yourself:
■ What does reduced-form approach do?

- What does structural approach do?

■ What are the pros and cons for these two methods?

Motivating Example: Female Labor Participation

Now, remind yourself:
■ What does reduced-form approach do?

- What does structural approach do?
- What are the pros and cons for these two methods?

Motivating Example: Female Labor Participation

Now, remind yourself:
■ What does reduced-form approach do?

- What does structural approach do?

■ What are the pros and cons for these two methods?

Motivating Example: Female Labor Participation

Motivating Example: Female Labor Participation

- This is a very typical example of Discrete Choice Model (DCM)
- Today, we will have a brief introduction to DCM and its important example: Logit model
- Tins: I ogit model is intrinsically structural

Motivating Example: Female Labor Participation

- This is a very typical example of Discrete Choice Model (DCM)
- Today, we will have a brief introduction to DCM and its important example: Logit model
- Tips: Logit model is intrinsically structural

Motivating Example: Female Labor Participation

■ This is a very typical example of Discrete Choice Model (DCM)

- Today, we will have a brief introduction to DCM and its important example: Logit model
- Tips: Logit model is intrinsically structural

Introduction to DCM: Settings

Introduction to DCM: Settings

- DCM describes decision makers' choices among discrete alternatives
- A man chooses whether to smoke or not
- A student chooses how to go to school (Bus/Taxi/Bike)
- A firm chooses whether to enter a local market (M/almart vs. Local store)

Introduction to DCM: Settings

- DCM describes decision makers' choices among discrete alternatives

■ A man chooses whether to smoke or not

- A student chooses how to go to school (Bus/Taxi/Bike)
- A firm chooses whether to enter a local market (Walmart vs. Local store)

Introduction to DCM: Settings

- DCM describes decision makers' choices among discrete alternatives
- A man chooses whether to smoke or not
- A student chooses how to go to school (Bus/Taxi/Bike)
- A firm chooses whether to enter a local market (Walmart vs. Local store)

Introduction to DCM: Settings

- DCM describes decision makers' choices among discrete alternatives
- A man chooses whether to smoke or not
- A student chooses how to go to school (Bus/Taxi/Bike)

■ A firm chooses whether to enter a local market (Walmart vs. Local store)

Introduction to DCM: Settings

Introduction to DCM: Settings

■ In continuous (differentiable) choice model, how do we optimize agents' choices?

- By taking FOC and finding internal solution
- But can we do the same thing for DCM? NO

Introduction to DCM: Settings

■ In continuous (differentiable) choice model, how do we optimize agents' choices?

- By taking FOC and finding internal solution
- But can we do the same thing for DCM? NO

Introduction to DCM: Settings

■ In continuous (differentiable) choice model, how do we optimize agents' choices?

- By taking FOC and finding internal solution

■ But can we do the same thing for DCM? NO.

Introduction to DCM: Settings

Introduction to DCM: Settings

- Assume that we have N decision makers, choosing among a set of J alternatives $1,2, \ldots, j$
- Decision maker n can get utility $U_{n j}$ for choosing j
- The optimization is: n choose i if and only if

$$
\begin{equation*}
U_{n i}>U_{n j}, \forall j \neq i \tag{5}
\end{equation*}
$$

- Researcher does not observe utility directly
- We see their choice results (revealed preference)
- We observe attributes of choices faced by agents $x_{n j}$, and agents' personal characteristics s_{n}
■ Thus, we denote $V_{n j}=V\left(x_{n j}, s_{n}\right)$ as representative utility

Introduction to DCM: Settings

- Assume that we have N decision makers, choosing among a set of J alternatives $1,2, \ldots, j$
■ Decision maker n can get utility $U_{n j}$ for choosing j
- The optimization is: n choose i if and only if

$$
\begin{equation*}
U_{n i}>U_{n j}, \forall j \neq i \tag{5}
\end{equation*}
$$

- Researcher does not observe utility directly

■ We see their choice results (revealed preference)

- We observe attributes of choices faced by agents $x_{n j}$, and agents' personal characteristics s_{n}
■ Thus, we denote $V_{n j}=V\left(x_{n j}, s_{n}\right)$ as representative utility

Introduction to DCM: Settings

- Assume that we have N decision makers, choosing among a set of J alternatives $1,2, \ldots, j$
- Decision maker n can get utility $U_{n j}$ for choosing j
- The optimization is: n choose i if and only if

$$
\begin{equation*}
U_{n i}>U_{n j}, \forall j \neq i \tag{5}
\end{equation*}
$$

- Researcher does not observe utility directly
- We see their choice results (revealed preference)

■ We observe attributes of choices faced by agents $x_{n j}$, and agents' personal characteristics s_{n}
■ Thus, we denote $V_{n j}=V\left(x_{n j}, s_{n}\right)$ as representative utility

Introduction to DCM: Settings

- Assume that we have N decision makers, choosing among a set of J alternatives $1,2, \ldots, j$
■ Decision maker n can get utility $U_{n j}$ for choosing j
■ The optimization is: n choose i if and only if

$$
\begin{equation*}
U_{n i}>U_{n j}, \forall j \neq i \tag{5}
\end{equation*}
$$

- Researcher does not observe utility directly
- We see their choice results (revealed preference)
- We observe attributes of choices faced by agents $x_{n j}$, and agents' personal characteristics s_{n}
- Thus, we denote $V_{n j}=V\left(x_{n j}, s_{n}\right)$ as representative utility

Introduction to DCM: Settings

- Assume that we have N decision makers, choosing among a set of J alternatives $1,2, \ldots, j$
■ Decision maker n can get utility $U_{n j}$ for choosing j
- The optimization is: n choose i if and only if

$$
\begin{equation*}
U_{n i}>U_{n j}, \forall j \neq i \tag{5}
\end{equation*}
$$

■ Researcher does not observe utility directly

- We see their choice results (revealed preference)
- We observe attributes of choices faced by agents $x_{n j}$, and agents' personal characteristics s_{n}
■ Thus, we denote $V_{n j}=V\left(x_{n j}, s_{n}\right)$ as representative utility

Introduction to DCM: Settings

- Assume that we have N decision makers, choosing among a set of J alternatives $1,2, \ldots, j$
■ Decision maker n can get utility $U_{n j}$ for choosing j
- The optimization is: n choose i if and only if

$$
\begin{equation*}
U_{n i}>U_{n j}, \forall j \neq i \tag{5}
\end{equation*}
$$

- Researcher does not observe utility directly

■ We see their choice results (revealed preference)
■ We observe attributes of choices faced by agents $x_{n j}$, and agents' personal characteristics s_{n}

- Thus, we denote $V_{n j}=V\left(x_{n j}, s_{n}\right)$ as representative utility

Introduction to DCM: Settings

- Assume that we have N decision makers, choosing among a set of J alternatives $1,2, \ldots, j$
- Decision maker n can get utility $U_{n j}$ for choosing j
- The optimization is: n choose i if and only if

$$
\begin{equation*}
U_{n i}>U_{n j}, \forall j \neq i \tag{5}
\end{equation*}
$$

■ Researcher does not observe utility directly
■ We see their choice results (revealed preference)
■ We observe attributes of choices faced by agents $x_{n j}$, and agents' personal characteristics s_{n}
■ Thus, we denote $V_{n j}=V\left(x_{n j}, s_{n}\right)$ as representative utility

Introduction to DCM: Settings

Introduction to DCM: Settings

- Utility of choice j to agent n can be expressed as:

$$
\begin{equation*}
U_{n j}=V_{n j}+\epsilon_{n j} \tag{6}
\end{equation*}
$$

- $\epsilon_{n j}$ is the part of utility affected by unobserved factors
- Assume that we have pdf $f\left(\epsilon_{n}\right)$ for $\epsilon_{n}^{\prime}=\left[\epsilon_{n 1}, \ldots \epsilon_{n J}\right]$ across the population

$$
\begin{aligned}
P_{n i} & =P\left(U_{n i}>U_{n j}, V j \neq i\right) \\
& =P\left(V_{n i}+\epsilon_{n i}>V_{n j}+\epsilon_{n j}, \forall j \neq i\right) \\
& =P\left(\epsilon_{n j}-\epsilon_{n i}<V_{n i}-V_{n j}, \forall j \neq i\right) \\
& =\int_{\epsilon} l\left(\epsilon_{n j}-\epsilon_{n i}<V_{n i}-V_{n j}, \forall j \neq i\right) f\left(\epsilon_{n}\right) d \epsilon_{n}
\end{aligned}
$$

Introduction to DCM: Settings

- Utility of choice j to agent n can be expressed as:

$$
\begin{equation*}
U_{n j}=V_{n j}+\epsilon_{n j} \tag{6}
\end{equation*}
$$

- $\epsilon_{n j}$ is the part of utility affected by unobserved factors
- Assume that we have pdf $f\left(\epsilon_{n}\right)$ for $\epsilon_{n}^{\prime}=\left[\epsilon_{n 1}, \ldots \epsilon_{n J}\right]$ across the population

Introduction to DCM: Settings

- Utility of choice j to agent n can be expressed as:

$$
\begin{equation*}
U_{n j}=V_{n j}+\epsilon_{n j} \tag{6}
\end{equation*}
$$

- $\epsilon_{n j}$ is the part of utility affected by unobserved factors
- Assume that we have pdf $f\left(\epsilon_{n}\right)$ for $\epsilon_{n}^{\prime}=\left[\epsilon_{n 1}, \ldots \epsilon_{n J}\right]$ across the population

$$
\begin{aligned}
P_{n i} & =P\left(U_{n i}>U_{n j}, \forall j \neq i\right) \\
& =P\left(V_{n i}+\epsilon_{n i}>V_{n j}+\epsilon_{n j}, \forall j \neq i\right) \\
& =P\left(\epsilon_{n j}-\epsilon_{n i}<V_{n i}-V_{n j}, \forall j \neq i\right) \\
& =\int_{\epsilon} I\left(\epsilon_{n j}-\epsilon_{n i}<V_{n i}-V_{n j}, \forall j \neq i\right) f\left(\epsilon_{n}\right) d \epsilon_{n}
\end{aligned}
$$

Introduction to DCM: Settings

Introduction to DCM: Settings

- This is the probability for an agent with $V_{n i}$ to choose alternative i

$$
P_{n i}=\int_{\epsilon} I\left(\epsilon_{n j}-\epsilon_{n i}<V_{n i}-V_{n j}, \forall j \neq i\right) f\left(\epsilon_{n}\right) d \epsilon_{n}
$$

- Different assumptions of the pdf $f\left(\epsilon_{n}\right)$ gives different models
- This expression does not guarantee a closed-form choice probability

■ Type I Extreme Value Distribution gives Logit (Closed-form)

- Normal Distribution gives Probit (Not closed-form)
- Logit and Probit are specific types of DCM

Introduction to DCM: Settings

- This is the probability for an agent with $V_{n i}$ to choose alternative i

$$
P_{n i}=\int_{\epsilon} I\left(\epsilon_{n j}-\epsilon_{n i}<V_{n i}-V_{n j}, \forall j \neq i\right) f\left(\epsilon_{n}\right) d \epsilon_{n}
$$

■ Different assumptions of the pdf $f\left(\epsilon_{n}\right)$ gives different models

- This expression does not guarantee a closed-form choice probability
- Type I Extreme Value Distribution gives Logit (Closed-form)
- Normal Distribution gives Probit (Not closed-form)
- Logit and Probit are specific types of DCM

Introduction to DCM: Settings

- This is the probability for an agent with $V_{n i}$ to choose alternative i

$$
P_{n i}=\int_{\epsilon} I\left(\epsilon_{n j}-\epsilon_{n i}<V_{n i}-V_{n j}, \forall j \neq i\right) f\left(\epsilon_{n}\right) d \epsilon_{n}
$$

- Different assumptions of the pdf $f\left(\epsilon_{n}\right)$ gives different models
- This expression does not guarantee a closed-form choice probability
- Type I Extreme Value Distribution gives Logit (Closed-form)
- Normal Distribution gives Probit (Not closed-form)

■ Logit and Probit are specific types of DCM

Introduction to DCM: Settings

- This is the probability for an agent with $V_{n i}$ to choose alternative i

$$
P_{n i}=\int_{\epsilon} I\left(\epsilon_{n j}-\epsilon_{n i}<V_{n i}-V_{n j}, \forall j \neq i\right) f\left(\epsilon_{n}\right) d \epsilon_{n}
$$

- Different assumptions of the pdf $f\left(\epsilon_{n}\right)$ gives different models
- This expression does not guarantee a closed-form choice probability
- Type I Extreme Value Distribution gives Logit (Closed-form)
- Normal Distribution gives Probit (Not closed-form)

■ Logit and Probit are specific types of DCM

Introduction to DCM: Settings

- This is the probability for an agent with $V_{n i}$ to choose alternative i

$$
P_{n i}=\int_{\epsilon} I\left(\epsilon_{n j}-\epsilon_{n i}<V_{n i}-V_{n j}, \forall j \neq i\right) f\left(\epsilon_{n}\right) d \epsilon_{n}
$$

- Different assumptions of the pdf $f\left(\epsilon_{n}\right)$ gives different models
- This expression does not guarantee a closed-form choice probability
- Type I Extreme Value Distribution gives Logit (Closed-form)

■ Normal Distribution gives Probit (Not closed-form)

- Logit and Probit are specific types of DCM

Introduction to DCM: Settings

- This is the probability for an agent with $V_{n i}$ to choose alternative i

$$
P_{n i}=\int_{\epsilon} I\left(\epsilon_{n j}-\epsilon_{n i}<V_{n i}-V_{n j}, \forall j \neq i\right) f\left(\epsilon_{n}\right) d \epsilon_{n}
$$

■ Different assumptions of the pdf $f\left(\epsilon_{n}\right)$ gives different models

- This expression does not guarantee a closed-form choice probability
- Type I Extreme Value Distribution gives Logit (Closed-form)

■ Normal Distribution gives Probit (Not closed-form)
■ Logit and Probit are specific types of DCM

Introduction to DCM: Identification

Introduction to DCM: Identification

- The identification of the DCM is important
- It relates to some primitive properties of utility function
- It can be concluded in two statements
- Why is this the case?
- Let's go back to the fundamental theory of utility

Introduction to DCM: Identification

- The identification of the DCM is important
- It relates to some primitive properties of utility function
- It can be concluded in two statements
- Why is this the case?
- Let's go back to the funclamental theory of utility

Introduction to DCM: Identification

- The identification of the DCM is important
- It relates to some primitive properties of utility function

■ It can be concluded in two statements

- 2. The scale of utility is arbitrary
- W/hy is this the case?
- Let's go back to the fundamental theory of utility

Introduction to DCM: Identification

- The identification of the DCM is important
- It relates to some primitive properties of utility function

■ It can be concluded in two statements

- 1. Only differences in utility matter
- Why is this the case?
- Let's go back to the funclamental theory of utility

Introduction to DCM: Identification

- The identification of the DCM is important
- It relates to some primitive properties of utility function

■ It can be concluded in two statements

- 1. Only differences in utility matter
- 2. The scale of utility is arbitrary
- Why is this the case?
- Let's go back to the fundamental theory of utility

Introduction to DCM: Identification

- The identification of the DCM is important
- It relates to some primitive properties of utility function

■ It can be concluded in two statements

- 1. Only differences in utility matter
- 2. The scale of utility is arbitrary

■ Why is this the case?

- Let's go back to the fundamental theory of utility

Introduction to DCM: Identification

- The identification of the DCM is important
- It relates to some primitive properties of utility function

■ It can be concluded in two statements

- 1. Only differences in utility matter
- 2. The scale of utility is arbitrary

■ Why is this the case?
■ Let's go back to the fundamental theory of utility

Introduction to DCM: Identification

Introduction to DCM: Identification

- Utility function comes from preference
- Assume that we have goods set X, a preference relation \succsim defined on X, satisfying
- We call it a "rational" preference
- There exists a utility function \Rightarrow Preference is rational

Introduction to DCM: Identification

- Utility function comes from preference
- Assume that we have goods set X, a preference relation \gtrsim defined on X, satisfying
- (1) Completeness: $\forall x, y \in X$, we have $x \gtrsim y$ or $y \gtrsim x$ (or both)
- (2) Transitivity: $\forall x, y, z \in X$, if $x \gtrsim y, y \gtrsim z$, then $x \gtrsim z$
- We call it a "rational" preference
- There exists a utility function \Rightarrow Preference is rational

Introduction to DCM: Identification

- Utility function comes from preference
- Assume that we have goods set X, a preference relation \gtrsim defined on X, satisfying
- (1)Completeness: $\forall x, y \in X$, we have $x \gtrsim y$ or $y \gtrsim x$ (or both)
- We call it a "rational" preference
- There exists a utility function \Rightarrow Preference is rational

Introduction to DCM: Identification

- Utility function comes from preference
- Assume that we have goods set X, a preference relation \gtrsim defined on X, satisfying
- (1) Completeness: $\forall x, y \in X$, we have $x \gtrsim y$ or $y \gtrsim x$ (or both)
- (2) Transitivity: $\forall x, y, z \in X$, if $x \gtrsim y, y \gtrsim z$, then $x \gtrsim z$
- We call it a "rational" preference
- There exists a utility function \Rightarrow Preference is rational

Introduction to DCM: Identification

- Utility function comes from preference
- Assume that we have goods set X, a preference relation \gtrsim defined on X, satisfying
- (1)Completeness: $\forall x, y \in X$, we have $x \gtrsim y$ or $y \gtrsim x$ (or both)
- (2) Transitivity: $\forall x, y, z \in X$, if $x \gtrsim y, y \gtrsim z$, then $x \gtrsim z$
- We call it a "rational" preference

Definition 1.B. 2 in MWG

A function $u: X \rightarrow R$ is a utility function representing preference \gtrsim if $\forall x, y \in X$,
$x \gtrsim y \Leftrightarrow u(x) \geq u(y)$

- There exists a utility function \Rightarrow Preference is rational

Introduction to DCM: Identification

- Utility function comes from preference
- Assume that we have goods set X, a preference relation \gtrsim defined on X, satisfying
- (1)Completeness: $\forall x, y \in X$, we have $x \gtrsim y$ or $y \gtrsim x$ (or both)
- (2) Transitivity: $\forall x, y, z \in X$, if $x \gtrsim y, y \gtrsim z$, then $x \gtrsim z$

■ We call it a "rational" preference

Definition 1.B. 2 in MWG

A function $u: X \rightarrow R$ is a utility function representing preference \gtrsim if $\forall x, y \in X$, $x \gtrsim y \Leftrightarrow u(x) \geq u(y)$

- There exists a utility function \Rightarrow Preference is rational

Introduction to DCM: Identification

- Utility function comes from preference
- Assume that we have goods set X, a preference relation \gtrsim defined on X, satisfying
- (1)Completeness: $\forall x, y \in X$, we have $x \gtrsim y$ or $y \gtrsim x$ (or both)
- (2) Transitivity: $\forall x, y, z \in X$, if $x \gtrsim y, y \gtrsim z$, then $x \gtrsim z$

■ We call it a "rational" preference

Definition 1.B. 2 in MWG

A function $u: X \rightarrow R$ is a utility function representing preference \gtrsim if $\forall x, y \in X$, $x \gtrsim y \Leftrightarrow u(x) \geq u(y)$

- There exists a utility function \Rightarrow Preference is rational

Introduction to DCM: Identification

Introduction to DCM: Identification

- A utility function assigns a numerical value to each element in X in accordance with the individual's preferences
- Thus, utility is a representation of preference!
- Preference is ordinal \Rightarrow Utility is ordinal
- If a rational preference can be represented by u, then it can be represented by any strictly increasing transformation of it

■ For instance, $u+1, u+k, u * 2$, $k u$

Introduction to DCM: Identification

- A utility function assigns a numerical value to each element in X in accordance with the individual's preferences
- Thus, utility is a representation of preference!
- Preference is ordinal \Rightarrow Utility is ordinal
- If a rational preference can be represented by u, then it can be represented by any strictly increasing transformation of it
- For instance, $u+1, u+k, u * 2, k u$

Introduction to DCM: Identification

- A utility function assigns a numerical value to each element in X in accordance with the individual's preferences
- Thus, utility is a representation of preference!

■ Preference is ordinal \Rightarrow Utility is ordinal

- If a rational preference can be represented by u, then it can be represented by any strictly increasing transformation of it
= For instance, $u+1, u+k, u * 2, k u$

Introduction to DCM: Identification

- A utility function assigns a numerical value to each element in X in accordance with the individual's preferences
- Thus, utility is a representation of preference!

■ Preference is ordinal \Rightarrow Utility is ordinal

- If a rational preference can be represented by u, then it can be represented by any strictly increasing transformation of it
- For instance, $u+1, u+k, u * 2, k u$.

Introduction to DCM: Identification

- A utility function assigns a numerical value to each element in X in accordance with the individual's preferences
- Thus, utility is a representation of preference!
- Preference is ordinal \Rightarrow Utility is ordinal
- If a rational preference can be represented by u, then it can be represented by any strictly increasing transformation of it
■ For instance, $u+1, u+k, u * 2, k u \ldots \ldots$

Introduction to DCM: Identification

Introduction to DCM: Identification

■ 1. Only differences in utility matter

- 2. The scale of utility is arbitrary
- Let's use an example to reveal these two statements
- Assume that you can go to school either by bus (b) or by car (c)
- T_{j} is the speed of choice j, k_{j} is choice fixed effect

$$
\begin{aligned}
& U_{c}=\alpha T_{c}+k_{c}+\epsilon_{c} \\
& U_{b}=\alpha T_{b}+k_{b}+\epsilon_{b}
\end{aligned}
$$

Introduction to DCM: Identification

- 1. Only differences in utility matter
- 2. The scale of utility is arbitrary
- Let's use an example to reveal these two statements
- Assume that you can go to school either by bus (b) or by car (c)
- T_{j} is the speed of choice j, k_{j} is choice fixed effect
$U_{c}=\alpha T_{c}+k_{c}+\epsilon_{c}$
$U_{b}=\alpha T_{b}+k_{b}+\epsilon_{b}$

Introduction to DCM: Identification

■ 1. Only differences in utility matter

- 2. The scale of utility is arbitrary
- Let's use an example to reveal these two statements
- Assume that you can go to school either by bus (b) or by car (c)
- T_{j} is the speed of choice j, k_{j} is choice fixed effect
$U_{C}=\alpha T_{C}+k_{c}+\epsilon_{c}$
$U_{b}=\alpha T_{b}+k_{b}+\epsilon_{b}$

Introduction to DCM: Identification

■ 1. Only differences in utility matter

- 2. The scale of utility is arbitrary
- Let's use an example to reveal these two statements
- Assume that you can go to school either by bus (b) or by car (c)
- T_{j} is the speed of choice j, k_{j} is choice fixed effect
$U_{c}=\alpha T_{c}+k_{c}+\epsilon_{c}$
$U_{b}=\alpha T_{b}+k_{b}+\epsilon_{b}$

Introduction to DCM: Identification

- 1. Only differences in utility matter
- 2. The scale of utility is arbitrary
- Let's use an example to reveal these two statements
- Assume that you can go to school either by bus (b) or by car (c)
- T_{j} is the speed of choice j, k_{j} is choice fixed effect

$$
\begin{aligned}
& U_{c}=\alpha T_{c}+k_{c}+\epsilon_{c} \\
& U_{b}=\alpha T_{b}+k_{b}+\epsilon_{b}
\end{aligned}
$$

Introduction to DCM: Identification

1. Only differences in utility matter

Introduction to DCM: Identification

1. Only differences in utility matter

Introduction to DCM: Identification

1. Only differences in utility matter

- Take difference, we have:

$$
U_{c}-U_{b}=\alpha\left(T_{c}-T_{b}\right)+\left(k_{c}-k_{b}\right)+\left(\epsilon_{c}-\epsilon_{b}\right)
$$

- Only $\left(k_{c}-k_{b}\right)$ can be identified, but not k_{c} and k_{b} separately
- System u_{j} and $u_{j}+1$ are observational equivalent
- I don't care it is $u_{i}-u_{j}$ or $u_{i}+1-\left(u_{j}+1\right)$
- Thus, you cannot give each alternative a constant
- What to do: Normalize the utility of one of the alternatives to be zero (Implicitly done by running logit/probit regressions)

Introduction to DCM: Identification

1. Only differences in utility matter

- Take difference, we have:

$$
U_{c}-U_{b}=\alpha\left(T_{c}-T_{b}\right)+\left(k_{c}-k_{b}\right)+\left(\epsilon_{c}-\epsilon_{b}\right)
$$

- Only $\left(k_{c}-k_{b}\right)$ can be identified, but not k_{c} and k_{b} separately
- System u_{j} and $u_{j}+1$ are observational equivalent
- I don't care it is $u_{i}-u_{j}$ or $u_{i}+1-\left(u_{j}+1\right)$

■ Thus, you cannot give each alternative a constant

- What to do: Normalize the utility of one of the alternatives to be zero (Implicitly done by running logit/probit regressions)

Introduction to DCM: Identification

1. Only differences in utility matter

- Take difference, we have:

$$
U_{c}-U_{b}=\alpha\left(T_{c}-T_{b}\right)+\left(k_{c}-k_{b}\right)+\left(\epsilon_{c}-\epsilon_{b}\right)
$$

- Only $\left(k_{c}-k_{b}\right)$ can be identified, but not k_{c} and k_{b} separately

■ System u_{j} and $u_{j}+1$ are observational equivalent

- I don't care it is $u_{i}-u_{j}$ or $u_{i}+1-\left(u_{j}+1\right)$
- Thus, you cannot give each alternative a constant
- What to do: Normalize the utility of one of the alternatives to be zero (Implicitly done by running logit/probit regressions)

Introduction to DCM: Identification

1. Only differences in utility matter

- Take difference, we have:

$$
U_{c}-U_{b}=\alpha\left(T_{c}-T_{b}\right)+\left(k_{c}-k_{b}\right)+\left(\epsilon_{c}-\epsilon_{b}\right)
$$

- Only $\left(k_{c}-k_{b}\right)$ can be identified, but not k_{c} and k_{b} separately
- System u_{j} and $u_{j}+1$ are observational equivalent

■ I don't care it is $u_{i}-u_{j}$ or $u_{i}+1-\left(u_{j}+1\right)$

- Thus, you cannot give each alternative a constant
- What to do: Normalize the utility of one of the alternatives to be zero (Implicitly done by running logit/probit regressions)

Introduction to DCM: Identification

1. Only differences in utility matter

- Take difference, we have:

$$
U_{c}-U_{b}=\alpha\left(T_{c}-T_{b}\right)+\left(k_{c}-k_{b}\right)+\left(\epsilon_{c}-\epsilon_{b}\right)
$$

- Only $\left(k_{c}-k_{b}\right)$ can be identified, but not k_{c} and k_{b} separately
- System u_{j} and $u_{j}+1$ are observational equivalent

■ I don't care it is $u_{i}-u_{j}$ or $u_{i}+1-\left(u_{j}+1\right)$

- Thus, you cannot give each alternative a constant
- What to do: Normalize the utility of one of the alternatives to be zero (Implicitly done by running logit/probit regressions)

Introduction to DCM: Identification

1. Only differences in utility matter

- Take difference, we have:

$$
U_{c}-U_{b}=\alpha\left(T_{c}-T_{b}\right)+\left(k_{c}-k_{b}\right)+\left(\epsilon_{c}-\epsilon_{b}\right)
$$

- Only $\left(k_{c}-k_{b}\right)$ can be identified, but not k_{c} and k_{b} separately
- System u_{j} and $u_{j}+1$ are observational equivalent

■ I don't care it is $u_{i}-u_{j}$ or $u_{i}+1-\left(u_{j}+1\right)$

- Thus, you cannot give each alternative a constant
- What to do: Normalize the utility of one of the alternatives to be zero (Implicitly done by running logit/probit regressions)

Introduction to DCM: Identification

Introduction to DCM: Identification

1. Only differences in utility matter

Introduction to DCM: Identification

1. Only differences in utility matter

- In addition, not all differences matter
- Assume that you include some personal characteristics Y_{n} in the utility

$$
\begin{aligned}
U_{n c} & =\alpha T_{c}+\beta Y_{n}+\gamma Y_{n} T_{c}+\epsilon_{n c} \\
U_{n b} & =\alpha T_{b}+\beta Y_{n}+\gamma Y_{n} T_{b}+\epsilon_{n b} \\
U_{n b}-U_{n c} & =\alpha\left(T_{b}-T_{c}\right)+\gamma Y_{n}\left(T_{b}-T_{c}\right)+\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

- Y_{n} is canceled out, only γ is identified, but not β
- Differences in nersonal characteristics does not matter
- We are comparing alternatives for each person, not across people
- It matters only if it interacts with choice characteristics
= Don't add nersonal-level variable without interaction with choice-level variable

Introduction to DCM: Identification

1. Only differences in utility matter

- In addition, not all differences matter

■ Assume that you include some personal characteristics Y_{n} in the utility

$$
\begin{aligned}
U_{n c} & =\alpha T_{c}+\beta Y_{n}+\gamma Y_{n} T_{c}+\epsilon_{n c} \\
U_{n b} & =\alpha T_{b}+\beta Y_{n}+\gamma Y_{n} T_{b}+\epsilon_{n b} \\
U_{n b}-U_{n c} & =\alpha\left(T_{b}-T_{c}\right)+\gamma Y_{n}\left(T_{b}-T_{c}\right)+\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

- Y_{n} is canceled out, only γ is identified, but not β
- Differences in personal characteristics does not matter
- We are comparing alternatives for each nerson, not across people
- It matters only if it interacts with choice characteristics
- Don't add personal-level variable without interaction with choice-level variable

Introduction to DCM: Identification

1. Only differences in utility matter

- In addition, not all differences matter
- Assume that you include some personal characteristics Y_{n} in the utility

$$
\begin{aligned}
U_{n c} & =\alpha T_{c}+\beta Y_{n}+\gamma Y_{n} T_{c}+\epsilon_{n c} \\
U_{n b} & =\alpha T_{b}+\beta Y_{n}+\gamma Y_{n} T_{b}+\epsilon_{n b} \\
U_{n b}-U_{n c} & =\alpha\left(T_{b}-T_{c}\right)+\gamma Y_{n}\left(T_{b}-T_{c}\right)+\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

- Y_{n} is canceled out, only γ is identified, but not β
- Differences in personal characteristics does not matter
- We are comparing alternatives for each person, not across people
- It matters only if it interacts with choice characteristics
- Don't add personal-level variable without interaction with choice-level variable

Introduction to DCM: Identification

1. Only differences in utility matter

- In addition, not all differences matter

■ Assume that you include some personal characteristics Y_{n} in the utility

$$
\begin{aligned}
U_{n c} & =\alpha T_{c}+\beta Y_{n}+\gamma Y_{n} T_{c}+\epsilon_{n c} \\
U_{n b} & =\alpha T_{b}+\beta Y_{n}+\gamma Y_{n} T_{b}+\epsilon_{n b} \\
U_{n b}-U_{n c} & =\alpha\left(T_{b}-T_{c}\right)+\gamma Y_{n}\left(T_{b}-T_{c}\right)+\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

- Y_{n} is canceled out, only γ is identified, but not β
- Differences in personal characteristics does not matter
- We are comparing alternatives for each person, not across people
- It matters only if it interacts with choice characteristics
- Don't add nersonal-level variable without interaction with choice-level variable

Introduction to DCM: Identification

1. Only differences in utility matter

- In addition, not all differences matter

■ Assume that you include some personal characteristics Y_{n} in the utility

$$
\begin{aligned}
U_{n c} & =\alpha T_{c}+\beta Y_{n}+\gamma Y_{n} T_{c}+\epsilon_{n c} \\
U_{n b} & =\alpha T_{b}+\beta Y_{n}+\gamma Y_{n} T_{b}+\epsilon_{n b} \\
U_{n b}-U_{n c} & =\alpha\left(T_{b}-T_{c}\right)+\gamma Y_{n}\left(T_{b}-T_{c}\right)+\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

- Y_{n} is canceled out, only γ is identified, but not β
- Differences in personal characteristics does not matter
- We are comparing alternatives for each person, not across people
- It matters only if it interacts with choice characteristics
- Don't add personal-level variable without interaction with choice-level variable

Introduction to DCM: Identification

1. Only differences in utility matter

- In addition, not all differences matter

■ Assume that you include some personal characteristics Y_{n} in the utility

$$
\begin{aligned}
U_{n c} & =\alpha T_{c}+\beta Y_{n}+\gamma Y_{n} T_{c}+\epsilon_{n c} \\
U_{n b} & =\alpha T_{b}+\beta Y_{n}+\gamma Y_{n} T_{b}+\epsilon_{n b} \\
U_{n b}-U_{n c} & =\alpha\left(T_{b}-T_{c}\right)+\gamma Y_{n}\left(T_{b}-T_{c}\right)+\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

- Y_{n} is canceled out, only γ is identified, but not β
- Differences in personal characteristics does not matter
- We are comparing alternatives for each person, not across people
- It matters only if it interacts with choice characteristics

Introduction to DCM: Identification

1. Only differences in utility matter

- In addition, not all differences matter

■ Assume that you include some personal characteristics Y_{n} in the utility

$$
\begin{aligned}
U_{n c} & =\alpha T_{c}+\beta Y_{n}+\gamma Y_{n} T_{c}+\epsilon_{n c} \\
U_{n b} & =\alpha T_{b}+\beta Y_{n}+\gamma Y_{n} T_{b}+\epsilon_{n b} \\
U_{n b}-U_{n c} & =\alpha\left(T_{b}-T_{c}\right)+\gamma Y_{n}\left(T_{b}-T_{c}\right)+\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

- Y_{n} is canceled out, only γ is identified, but not β
- Differences in personal characteristics does not matter
- We are comparing alternatives for each person, not across people
- It matters only if it interacts with choice characteristics
- Don't add personal-level variable without interaction with choice-level variable

Introduction to DCM: Identification

Introduction to DCM: Identification

2. The scale of utility is arbitrary

Introduction to DCM: Identification

2. The scale of utility is arbitrary

■ Similarly, u_{j} and $u_{j} * 2$ are observational equivalent

- I don't care it is $u_{i}-u_{j}$ or $2 *\left(u_{i}-u_{j}\right)$
- Assume that we have the following model 1

$$
\begin{aligned}
U_{n c} & =\alpha T_{c}+\beta Y_{n}+\epsilon_{n c} \\
U_{n b} & =\alpha T_{b}+\beta Y_{n}+\epsilon_{n b} \\
U_{n b}-U_{n c} & =\alpha\left(T_{b}-T_{c}\right)+\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

- And the following model 2

$$
\begin{aligned}
U_{n c} & =\alpha 2 T_{c}+\beta 2 Y_{n}+2 \epsilon_{n c} \\
U_{n b} & =\alpha 2 T_{b}+2 \beta Y_{n}+2 \epsilon_{n b} \\
2 U_{n b}-2 U_{n c} & =\alpha 2\left(T_{b}-T_{c}\right)+2\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

- They are observational equivalent

Introduction to DCM: Identification

2. The scale of utility is arbitrary

- Similarly, u_{j} and $u_{j} * 2$ are observational equivalent
\square I don't care it is $u_{i}-u_{j}$ or $2 *\left(u_{i}-u_{j}\right)$
- Assume that we have the following model 1

- And the following model 2

$$
U_{n c}=\alpha 2 T_{c}+\beta 2 Y_{n}+2 \epsilon_{n c}
$$

$$
U_{n b}=\alpha 2 T_{b}+2 \beta Y_{n}+2 \epsilon_{n b}
$$

$$
2 U_{n b}-2 U_{n c}=\alpha 2\left(T_{b}-T_{c}\right)+2\left(\epsilon_{n b}-\epsilon_{n c}\right)
$$

- They are observational equivalent

Introduction to DCM: Identification

2. The scale of utility is arbitrary

- Similarly, u_{j} and $u_{j} * 2$ are observational equivalent

■ I don't care it is $u_{i}-u_{j}$ or $2 *\left(u_{i}-u_{j}\right)$

- Assume that we have the following model 1

$$
\begin{aligned}
U_{n c} & =\alpha T_{c}+\beta Y_{n}+\epsilon_{n c} \\
U_{n b} & =\alpha T_{b}+\beta Y_{n}+\epsilon_{n b} \\
U_{n b}-U_{n c} & =\alpha\left(T_{b}-T_{c}\right)+\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

- And the following model 2

- They are observational equivalent

Introduction to DCM: Identification

2. The scale of utility is arbitrary

■ Similarly, u_{j} and $u_{j} * 2$ are observational equivalent

- I don't care it is $u_{i}-u_{j}$ or $2 *\left(u_{i}-u_{j}\right)$
- Assume that we have the following model 1

$$
\begin{aligned}
U_{n c} & =\alpha T_{c}+\beta Y_{n}+\epsilon_{n c} \\
U_{n b} & =\alpha T_{b}+\beta Y_{n}+\epsilon_{n b} \\
U_{n b}-U_{n c} & =\alpha\left(T_{b}-T_{c}\right)+\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

- And the following model 2

$$
\begin{aligned}
U_{n c} & =\alpha 2 T_{c}+\beta 2 Y_{n}+2 \epsilon_{n c} \\
U_{n b} & =\alpha 2 T_{b}+2 \beta Y_{n}+2 \epsilon_{n b} \\
2 U_{n b}-2 U_{n c} & =\alpha 2\left(T_{b}-T_{c}\right)+2\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

Introduction to DCM: Identification

2. The scale of utility is arbitrary

■ Similarly, u_{j} and $u_{j} * 2$ are observational equivalent

- I don't care it is $u_{i}-u_{j}$ or $2 *\left(u_{i}-u_{j}\right)$
- Assume that we have the following model 1

$$
\begin{aligned}
U_{n c} & =\alpha T_{c}+\beta Y_{n}+\epsilon_{n c} \\
U_{n b} & =\alpha T_{b}+\beta Y_{n}+\epsilon_{n b} \\
U_{n b}-U_{n c} & =\alpha\left(T_{b}-T_{c}\right)+\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

- And the following model 2

$$
\begin{aligned}
U_{n c} & =\alpha 2 T_{c}+\beta 2 Y_{n}+2 \epsilon_{n c} \\
U_{n b} & =\alpha 2 T_{b}+2 \beta Y_{n}+2 \epsilon_{n b} \\
2 U_{n b}-2 U_{n c} & =\alpha 2\left(T_{b}-T_{c}\right)+2\left(\epsilon_{n b}-\epsilon_{n c}\right)
\end{aligned}
$$

- They are observational equivalent

Introduction to DCM: Identification

2. The scale of utility is arbitrary

Introduction to DCM: Identification

2. The scale of utility is arbitrary

Introduction to DCM: Identification

2. The scale of utility is arbitrary

- Thus, we need to normalize the scale
- What to do: normalize the variance of the error
- In Logit, this is automatically done: T1EV error has variance of $\frac{\pi^{2}}{6}$
- In Probit, this is automatically done: Standard Normal error has variance of 1

Introduction to DCM: Identification

2. The scale of utility is arbitrary

- Thus, we need to normalize the scale
- What to do: normalize the variance of the error
- In Logit, this is automatically done: T1EV error has variance of $\frac{\pi^{2}}{6}$
- In Probit, this is automatically done: Standard Normal error has variance of 1

Introduction to DCM: Identification

2. The scale of utility is arbitrary

- Thus, we need to normalize the scale
- What to do: normalize the variance of the error
- In Logit, this is automatically done: T1EV error has variance of $\frac{\pi^{2}}{6}$
- In Probit, this is automatically done: Standard Normal error has variance of 1

Introduction to DCM: Identification

2. The scale of utility is arbitrary

- Thus, we need to normalize the scale
- What to do: normalize the variance of the error
- In Logit, this is automatically done: T1EV error has variance of $\frac{\pi^{2}}{6}$
- In Probit, this is automatically done: Standard Normal error has variance of 1

Introduction to Logit Model: Settings

Introduction to Logit Model: Settings

- Assume that $\epsilon_{n j}$ is i.i.d. Type One Extreme Value (T1EV)
- PDF
- CDF: $F\left(\epsilon_{n j}\right)=e^{e}$
- Then we call this DCM a Logit model

Introduction to Logit Model: Settings

■ Assume that $\epsilon_{n j}$ is i.i.d. Type One Extreme Value (T1EV)
■ PDF: $f\left(\epsilon_{n j}\right)=e^{-\epsilon_{n j}} e^{-e^{-\epsilon_{n j}}}$

- CDF: $F\left(\epsilon_{n j}\right)=e^{e}$
- Then we call this DCM a Logit model

Introduction to Logit Model: Settings

■ Assume that $\epsilon_{n j}$ is i.i.d. Type One Extreme Value (T1EV)

- PDF: $f\left(\epsilon_{n j}\right)=e^{-\epsilon_{n j}} e^{-e^{-\epsilon_{n j}}}$
- CDF: $F\left(\epsilon_{n j}\right)=e^{e^{-\epsilon_{n j}}}$
- Then we call this DCM a Logit model

Introduction to Logit Model: Settings

- Assume that $\epsilon_{n j}$ is i.i.d. Type One Extreme Value (T1EV)
- PDF: $f\left(\epsilon_{n j}\right)=e^{-\epsilon_{n j}} e^{-e^{-\epsilon_{n j}}}$
- CDF: $F\left(\epsilon_{n j}\right)=e^{-e_{n j}}$
- Then we call this DCM a Logit model

Introduction to Logit Model: Choice Probability

- Let's derive the choice probability of Logit model

$$
\begin{aligned}
P_{n i} & =P\left(U_{n i}>U_{n j}, \forall j \neq i\right) \\
& =\int P_{n i} \mid \epsilon_{n i} \cdot F\left(\epsilon_{n i}\right) d \epsilon_{n i}
\end{aligned}
$$

- It turns out that we can write the (multinomial) choice probability as:
- In a binary choice case, we normalize one of the utilities to be zero and have:

Introduction to Logit Model: Choice Probability

- Let's derive the choice probability of Logit model

$$
\begin{aligned}
P_{n i} & =P\left(U_{n i}>U_{n j}, \forall j \neq i\right) \\
& =\int P_{n i} \mid \epsilon_{n i} \cdot F\left(\epsilon_{n i}\right) d \epsilon_{n i}
\end{aligned}
$$

- It turns out that we can write the (multinomial) choice probability as:

$$
\begin{equation*}
P_{n i}=\frac{e^{V_{n i}}}{\sum_{j} e^{V_{n j}}} \tag{7}
\end{equation*}
$$

- In a binary choice case, we normalize one of the utilities to be zero and have:

Introduction to Logit Model: Choice Probability

- Let's derive the choice probability of Logit model

$$
\begin{aligned}
P_{n i} & =P\left(U_{n i}>U_{n j}, \forall j \neq i\right) \\
& =\int P_{n i} \mid \epsilon_{n i} \cdot F\left(\epsilon_{n i}\right) d \epsilon_{n i}
\end{aligned}
$$

- It turns out that we can write the (multinomial) choice probability as:

$$
\begin{equation*}
P_{n i}=\frac{e^{V_{n i}}}{\sum_{j} e^{V_{n j}}} \tag{7}
\end{equation*}
$$

- In a binary choice case, we normalize one of the utilities to be zero and have:

$$
\begin{equation*}
P_{n 1}=\frac{e^{V_{n 1}}}{1+e^{V_{n 1}}} \tag{8}
\end{equation*}
$$

Introduction to Logit Model: Choice Probability

■ Homework: Derive the choice probability equation (7). The answer is in Train's book, Chapter 3.

Introduction to Logit Model: Choice Probability

- What does this choice probability mean?

$$
P_{n i}=\frac{e^{V_{n i}}}{\sum_{j} e^{V_{n j}}}
$$

- Choice probability of i, is the proportion of i 's exponential choice value, over the total exponential choice value
- Compatible with choice probability definition: $0<P_{n i}<1, \sum_{i} P_{n i}=1$ (Not like LPM)

Introduction to Logit Model: Choice Probability

- What does this choice probability mean?

$$
P_{n i}=\frac{e^{V_{n i}}}{\sum_{j} e^{V_{n j}}}
$$

- Choice probability of i, is the proportion of i 's exponential choice value, over the total exponential choice value
- Compatible with choice probability definition: $0<P_{n i}<1, \sum_{i} P_{n i}=1$ (Not like LPM)

Introduction to Logit Model: Choice Probability

- What does this choice probability mean?

$$
P_{n i}=\frac{e^{V_{n i}}}{\sum_{j} e^{V_{n j}}}
$$

- Choice probability of i, is the proportion of i 's exponential choice value, over the total exponential choice value
- Compatible with choice probability definition: $0<P_{n i}<1, \sum_{i} P_{n i}=1$ (Not like LPM)

Introduction to Logit Model: Choice Probability

- The relation of probability to representative utility is sigmoid (S-shaped)

- Marginal effects of $V_{n i}$ on $P_{n i}$ increase first and then decrease
- If you use a linear fit, which part do you fit the best?

Introduction to Logit Model: Choice Probability

- The relation of probability to representative utility is sigmoid (S-shaped)

- Marginal effects of $V_{n i}$ on $P_{n i}$ increase first and then decrease - If you use a linear fit, which part do you fit the best?

Introduction to Logit Model: Choice Probability

- The relation of probability to representative utility is sigmoid (S-shaped)

- Marginal effects of $V_{n i}$ on $P_{n i}$ increase first and then decrease

■ If you use a linear fit, which part do you fit the best?

Introduction to Logit Model: IIA

Introduction to Logit Model: IIA

- An important property: Independence from Irrelevant Alternatives (IIA)
- IIA: For any two alternatives i, k, the ratio of the logit probability is

- The ratio has nothing to do with other alternatives
- Ratio between any pair of choices denends only on their own choice values
- Add a new choice, delete another choice, will not change the ratio

Introduction to Logit Model: IIA

- An important property: Independence from Irrelevant Alternatives (IIA)
- IIA: For any two alternatives i, k, the ratio of the logit probability is

$$
\begin{aligned}
\frac{P_{n i}}{P_{n k}} & =\frac{e^{V_{n i}} / \sum_{j} e^{V_{n j}}}{e^{V_{n k}} / \sum_{j} e^{V_{n j}}} \\
& =\frac{e^{V_{n i}}}{e^{V_{n k}}}=e^{V_{n i}-V_{n k}}
\end{aligned}
$$

- The ratio has nothing to do with other alternatives
- Ratio between any pair of choices depends only on their own choice values
- Add a new choice delete another choice, will not change the ratio

Introduction to Logit Model: IIA

- An important property: Independence from Irrelevant Alternatives (IIA)
- IIA: For any two alternatives i, k, the ratio of the logit probability is

$$
\begin{aligned}
\frac{P_{n i}}{P_{n k}} & =\frac{e^{V_{n i}} / \sum_{j} e^{V_{n j}}}{e^{V_{n k}} / \sum_{j} e^{V_{n j}}} \\
& =\frac{e^{V_{n i}}}{e^{V_{n k}}}=e^{V_{n i}-V_{n k}}
\end{aligned}
$$

- The ratio has nothing to do with other alternatives
- Ratio between any pair of choices depends only on their own choice values
- Add a new choice, delete another choice, will not change the ratio

Introduction to Logit Model: IIA

- An important property: Independence from Irrelevant Alternatives (IIA)
- IIA: For any two alternatives i, k, the ratio of the logit probability is

$$
\begin{aligned}
\frac{P_{n i}}{P_{n k}} & =\frac{e^{V_{n i}} / \sum_{j} e^{V_{n j}}}{e^{V_{n k}} / \sum_{j} e^{V_{n j}}} \\
& =\frac{e^{V_{n i}}}{e^{V_{n k}}}=e^{V_{n i}-V_{n k}}
\end{aligned}
$$

- The ratio has nothing to do with other alternatives

■ Ratio between any pair of choices depends only on their own choice values

- Add a new choice, delete another choice, will not change the ratio

Introduction to Logit Model: IIA

- An important property: Independence from Irrelevant Alternatives (IIA)
- IIA: For any two alternatives i, k, the ratio of the logit probability is

$$
\begin{aligned}
\frac{P_{n i}}{P_{n k}} & =\frac{e^{V_{n i}} / \sum_{j} e^{V_{n j}}}{e^{V_{n k}} / \sum_{j} e^{V_{n j}}} \\
& =\frac{e^{V_{n i}}}{e^{V_{n k}}}=e^{V_{n i}-V_{n k}}
\end{aligned}
$$

- The ratio has nothing to do with other alternatives

■ Ratio between any pair of choices depends only on their own choice values
■ Add a new choice, delete another choice, will not change the ratio

Introduction to Logit Model: IIA

Introduction to Logit Model: IIA

- A manifestation of IIA is proportionate shifting
- A change in an attribute z of choice j, will change probabilities of all other choices by the same proportion
- With linear utility, the elasticity of choice prob i on changes in z of choice j is

$$
E_{i z_{n j}}=\frac{\partial P_{n i}}{\partial z_{n j}} \frac{z_{n j}}{P_{n i}}=-\beta_{z} z_{n j} P_{n j}, \forall i
$$

- It is only related to j, same for any i

Introduction to Logit Model: IIA

- A manifestation of IIA is proportionate shifting
- A change in an attribute z of choice j, will change probabilities of all other choices by the same proportion
- With linear utility, the elasticity of choice prob i on changes in z of choice j is

- It is only related to j, same for any i

Introduction to Logit Model: IIA

- A manifestation of IIA is proportionate shifting
- A change in an attribute z of choice j, will change probabilities of all other choices by the same proportion
- With linear utility, the elasticity of choice prob i on changes in z of choice j is

$$
E_{i z_{n j}}=\frac{\partial P_{n i}}{\partial z_{n j}} \frac{z_{n j}}{P_{n i}}=-\beta_{z} z_{n j} P_{n j}, \forall i
$$

- It is only related to j, same for any i

Introduction to Logit Model: IIA

- A manifestation of IIA is proportionate shifting
- A change in an attribute z of choice j, will change probabilities of all other choices by the same proportion
- With linear utility, the elasticity of choice prob i on changes in z of choice j is

$$
E_{i z_{n j}}=\frac{\partial P_{n i}}{\partial z_{n j}} \frac{z_{n j}}{P_{n i}}=-\beta_{z} z_{n j} P_{n j}, \forall i
$$

- It is only related to j, same for any i

Introduction to Logit Model: IIA

Introduction to Logit Model: IIA

- Is IIA a good property?
- Sometimes yes, sometimes no
- It can save computational resources when the number of choices is large
- But it is also limited: Red bus-Blue bus problem
- We will introduce more flexible models soon

Introduction to Logit Model: IIA

- Is IIA a good property?

■ Sometimes yes, sometimes no

- It can save computational resources when the number of choices is large
- But it is also limited: Red bus-Blue bus problem
- We will introduce more flexible models soon

Introduction to Logit Model: IIA

- Is IIA a good property?
- Sometimes yes, sometimes no
- It can save computational resources when the number of choices is large
- But it is also limited: Red bus-Blue bus problem
- We will introduce more flexible models soon

Introduction to Logit Model: IIA

- Is IIA a good property?
- Sometimes yes, sometimes no

■ It can save computational resources when the number of choices is large
■ But it is also limited: Red bus-Blue bus problem

- We will introduce more flexible models soon

Introduction to Logit Model: IIA

- Is IIA a good property?
- Sometimes yes, sometimes no

■ It can save computational resources when the number of choices is large
■ But it is also limited: Red bus-Blue bus problem

- We will introduce more flexible models soon

Introduction to Logit Model: Derivatives and Marginal Effect

Introduction to Logit Model: Derivatives and Marginal Effect

- The derivative of choice probability on its own attribute is:

$$
\begin{equation*}
\frac{\partial P_{n i}}{\partial z_{n i}}=\frac{\partial V_{n i}}{\partial z_{n i}} P_{n i}\left(1-P_{n i}\right) \tag{9}
\end{equation*}
$$

- Parameter is not marginal effect: $\frac{\partial P_{n i}}{\partial z_{n i}} \neq \frac{\partial V_{n i}}{\partial z_{n i}}$
- Even if V is linear, you cannot interpret $\beta=\frac{\partial V_{n i}}{\partial z_{n i}}$ as marginal effect of z on P
- Derivative is non-linear, largest when $P_{n i}=\left(1-P_{n i}\right)=0.5$

Introduction to Logit Model: Derivatives and Marginal Effect

- The derivative of choice probability on its own attribute is:

$$
\begin{equation*}
\frac{\partial P_{n i}}{\partial z_{n i}}=\frac{\partial V_{n i}}{\partial z_{n i}} P_{n i}\left(1-P_{n i}\right) \tag{9}
\end{equation*}
$$

- Parameter is not marginal effect: $\frac{\partial P_{n i}}{\partial z_{n i}} \neq \frac{\partial V_{n i}}{\partial z_{n i}}$
- Even if V is linear, you cannot interpret $\beta=\frac{\partial V_{n i}}{\partial z_{n i}}$ as marginal effect of z on P

■ Derivative is non-linear, largest when $P_{n i}=\left(1-P_{n i}\right)=0.5$

Introduction to Logit Model: Derivatives and Marginal Effect

- The derivative of choice probability on its own attribute is:

$$
\begin{equation*}
\frac{\partial P_{n i}}{\partial z_{n i}}=\frac{\partial V_{n i}}{\partial z_{n i}} P_{n i}\left(1-P_{n i}\right) \tag{9}
\end{equation*}
$$

■ Parameter is not marginal effect: $\frac{\partial P_{n i}}{\partial z_{n i}} \neq \frac{\partial V_{n i}}{\partial z_{n i}}$

- Even if V is linear, you cannot interpret $\beta=\frac{\partial V_{n i}}{\partial z_{n i}}$ as marginal effect of z on P
- Derivative is non-linear, largest when $P_{n i}=\left(1-P_{n i}\right)=0.5$

Introduction to Logit Model: Derivatives and Marginal Effect

- The derivative of choice probability on its own attribute is:

$$
\begin{equation*}
\frac{\partial P_{n i}}{\partial z_{n i}}=\frac{\partial V_{n i}}{\partial z_{n i}} P_{n i}\left(1-P_{n i}\right) \tag{9}
\end{equation*}
$$

- Parameter is not marginal effect: $\frac{\partial P_{n i}}{\partial z_{n i}} \neq \frac{\partial V_{n i}}{\partial z_{n i}}$
- Even if V is linear, you cannot interpret $\beta=\frac{\partial V_{n i}}{\partial z_{n i}}$ as marginal effect of z on P

■ Derivative is non-linear, largest when $P_{n i}=\left(1-P_{n i}\right)=0.5$

Introduction to Logit Model: Derivatives and Marginal Effect

Introduction to Logit Model: Derivatives and Marginal Effect

- Homework 2: Derive equation 9. The answer is in Train's book, Chapter 3.

Introduction to Logit Model: Consumer Surplus

Introduction to Logit Model: Consumer Surplus

- We are usually interested in the overall welfare of a consumer
- What is the impact of some policy changing some choices for a consumer?
- In Logit model, we have a closed-form solution for expected utility:

- C is a constant depending on the normalization
- The expected utility is the log sum of the exponential values of all choices
- The consumer surplus (WTP) is just:

$$
E\left(C S_{n}\right)=\frac{1}{\alpha_{n}} E\left(U_{n}\right)
$$

- α_{n} is the marginal utility of dollar income

Introduction to Logit Model: Consumer Surplus

- We are usually interested in the overall welfare of a consumer
- What is the impact of some policy changing some choices for a consumer?
- In Logit model, we have a closed-form solution for expected utility:

- C is a constant depending on the normalization
- The expected utility is the log sum of the exponential values of all choices
- The consumer surplus (WTP) is just:

$$
E\left(C S_{n}\right)=\frac{1}{\alpha_{n}} E\left(U_{n}\right)
$$

- α_{n} is the marginal utility of dollar income

Introduction to Logit Model: Consumer Surplus

- We are usually interested in the overall welfare of a consumer
- What is the impact of some policy changing some choices for a consumer?

■ In Logit model, we have a closed-form solution for expected utility:

$$
E\left(U_{n}\right)=E\left[\max _{j}\left(V_{n j}+\epsilon_{n j}\right)\right]=\ln \left(\sum_{j=1}^{J} e^{V_{n j}}\right)+C
$$

- C is a constant depending on the normalization
- The expected utility is the log sum of the exponential values of all choices
- The consumer surplus (WTP) is just:

- α_{n} is the marginal utility of dollar income

Introduction to Logit Model: Consumer Surplus

- We are usually interested in the overall welfare of a consumer
- What is the impact of some policy changing some choices for a consumer?
- In Logit model, we have a closed-form solution for expected utility:

$$
E\left(U_{n}\right)=E\left[\max _{j}\left(V_{n j}+\epsilon_{n j}\right)\right]=\ln \left(\sum_{j=1}^{J} e^{V_{n j}}\right)+C
$$

- C is a constant depending on the normalization
- The expected utility is the log sum of the exponential values of all choices
- The consumer surplus (WTP) is just:

- α_{n} is the marginal utility of dollar income

Introduction to Logit Model: Consumer Surplus

- We are usually interested in the overall welfare of a consumer

■ What is the impact of some policy changing some choices for a consumer?
■ In Logit model, we have a closed-form solution for expected utility:

$$
E\left(U_{n}\right)=E\left[\max _{j}\left(V_{n j}+\epsilon_{n j}\right)\right]=\ln \left(\sum_{j=1}^{J} e^{V_{n j}}\right)+C
$$

■ C is a constant depending on the normalization

- The expected utility is the log sum of the exponential values of all choices
- The consumer surplus (WTP) is just:

- α_{n} is the marginal utility of dollar income

Introduction to Logit Model: Consumer Surplus

- We are usually interested in the overall welfare of a consumer

■ What is the impact of some policy changing some choices for a consumer?

- In Logit model, we have a closed-form solution for expected utility:

$$
E\left(U_{n}\right)=E\left[\max _{j}\left(V_{n j}+\epsilon_{n j}\right)\right]=\ln \left(\sum_{j=1}^{J} e^{V_{n j}}\right)+C
$$

■ C is a constant depending on the normalization

- The expected utility is the log sum of the exponential values of all choices
- The consumer surplus (WTP) is just:

$$
E\left(C S_{n}\right)=\frac{1}{\alpha_{n}} E\left(U_{n}\right)
$$

Introduction to Logit Model: Consumer Surplus

- We are usually interested in the overall welfare of a consumer

■ What is the impact of some policy changing some choices for a consumer?

- In Logit model, we have a closed-form solution for expected utility:

$$
E\left(U_{n}\right)=E\left[\max _{j}\left(V_{n j}+\epsilon_{n j}\right)\right]=\ln \left(\sum_{j=1}^{J} e^{V_{n j}}\right)+C
$$

■ C is a constant depending on the normalization

- The expected utility is the log sum of the exponential values of all choices
- The consumer surplus (WTP) is just:

$$
E\left(C S_{n}\right)=\frac{1}{\alpha_{n}} E\left(U_{n}\right)
$$

- α_{n} is the marginal utility of dollar income

Introduction to Logit Model: Estimation

Introduction to Logit Model: Estimation

- We use MLE to estimate Logit model

$$
\begin{aligned}
L(\beta) & =\prod_{n}^{N} \prod_{i}\left(P_{n i}\right)^{y_{n i}} \\
L L(\beta) & =\sum_{n=1}^{N} \sum_{i} y_{n i} \ln P_{n i} \\
\hat{\beta}_{M L E} & =\operatorname{argmax}_{\beta} L L(\beta)
\end{aligned}
$$

- $y_{n i}$ is whether choice i is chosen in the data by individual n
- II (β) is globally concave, so it has a global maximum value

Introduction to Logit Model: Estimation

- We use MLE to estimate Logit model

$$
\begin{aligned}
L(\beta) & =\prod_{n}^{N} \prod_{i}\left(P_{n i}\right)^{y_{n i}} \\
L L(\beta) & =\sum_{n=1}^{N} \sum_{i} y_{n i} \ln P_{n i} \\
\hat{\beta}_{M L E} & =\operatorname{argmax}_{\beta} L L(\beta)
\end{aligned}
$$

- $y_{n i}$ is whether choice i is chosen in the data by individual n
- $L L(\beta)$ is globally concave, so it has a global maximum value

Introduction to Logit Model: Estimation

- We use MLE to estimate Logit model

$$
\begin{aligned}
L(\beta) & =\prod_{n}^{N} \prod_{i}\left(P_{n i}\right)^{y_{n i}} \\
L L(\beta) & =\sum_{n=1}^{N} \sum_{i} y_{n i} \ln P_{n i} \\
\hat{\beta}_{M L E} & =\operatorname{argmax}_{\beta} L L(\beta)
\end{aligned}
$$

- $y_{n i}$ is whether choice i is chosen in the data by individual n
- $L L(\beta)$ is globally concave, so it has a global maximum value

Motivating Example: Blue Bus vs Red Bus

Motivating Example: Blue Bus vs Red Bus

- As we have shown, Logit has a property of IIA
- Given two options A and B, changes of the third option would not change the relative probability of A and B
- In some situations, this property is not plausible

Motivating Example: Blue Bus vs Red Bus

- As we have shown, Logit has a property of IIA
- Given two options A and B, changes of the third option would not change the relative probability of A and B
- In some situations, this property is not plausible

Motivating Example: Blue Bus vs Red Bus

- As we have shown, Logit has a property of IIA
- Given two options A and B, changes of the third option would not change the relative probability of A and B
- In some situations, this property is not plausible

Motivating Example: Blue Bus vs Red Bus

Motivating Example: Blue Bus vs Red Bus

- Assume that we have two choices

Blue Bus vs. Taxi

- $P_{B B}=P_{T}=\frac{1}{2}$
- One day, the bus company decides to introduce some buses with a new color, red
- Now we have blue bus, red bus, taxi
- Red/blue bus is identical besides their color $\Rightarrow P_{R B}=P_{B B}$
- Due to IIA, we have: $P_{R B}=P_{B B}=P_{T}=\frac{1}{3}$
- You increase the probability of choosing bus by basically doing nothing

Motivating Example: Blue Bus vs Red Bus

- Assume that we have two choices

Blue Bus vs. Taxi

- $P_{B B}=P_{T}=\frac{1}{2}$
- One day, the bus company decides to introduce some buses with a new color, red

■ Now we have blue bus, red bus, taxi

- Red/blue bus is identical besides their color $\Rightarrow P_{R B}=P_{B B}$
- Due to IIA, we have: $P_{R B}=P_{B B}=P_{T}=\frac{1}{3}$
- You increase the probability of choosing bus by basically doing nothing

Motivating Example: Blue Bus vs Red Bus

- Assume that we have two choices

Blue Bus vs. Taxi

- $P_{B B}=P_{T}=\frac{1}{2}$

■ One day, the bus company decides to introduce some buses with a new color, red

- Now we have blue bus, red bus, taxi

■ Red/blue bus is identical besides their color $\Rightarrow P_{R B}=P_{B B}$

- Due to IIA, we have: $P_{R B}=P_{B B}=P_{T}=\frac{1}{3}$
- You increase the probability of choosing bus by basically doing nothing

Motivating Example: Blue Bus vs Red Bus

- Assume that we have two choices

Blue Bus vs. Taxi

- $P_{B B}=P_{T}=\frac{1}{2}$

■ One day, the bus company decides to introduce some buses with a new color, red
■ Now we have blue bus, red bus, taxi

- Red/blue bus is identical besides their color $\Rightarrow P_{R B}=P_{B B}$
- Due to IIA, we have: $P_{R B}=P_{B B}=P_{T}=\frac{1}{3}$
- You increase the probability of choosing bus by basically doing nothing

Motivating Example: Blue Bus vs Red Bus

- Assume that we have two choices

Blue Bus vs. Taxi

- $P_{B B}=P_{T}=\frac{1}{2}$

■ One day, the bus company decides to introduce some buses with a new color, red
■ Now we have blue bus, red bus, taxi
■ Red/blue bus is identical besides their color $\Rightarrow P_{R B}=P_{B B}$

- Due to IIA, we have: $P_{R B}=P_{B B}=P_{T}=\frac{1}{3}$
- You increase the probability of choosing bus by basically doing nothing

Motivating Example: Blue Bus vs Red Bus

- Assume that we have two choices

Blue Bus vs. Taxi

- $P_{B B}=P_{T}=\frac{1}{2}$
- One day, the bus company decides to introduce some buses with a new color, red

■ Now we have blue bus, red bus, taxi
■ Red/blue bus is identical besides their color $\Rightarrow P_{R B}=P_{B B}$

- Due to IIA, we have: $P_{R B}=P_{B B}=P_{T}=\frac{1}{3}$
- You increase the probability of choosing bus by basically doing nothing

Motivating Example: Blue Bus vs Red Bus

- Assume that we have two choices

Blue Bus vs. Taxi

- $P_{B B}=P_{T}=\frac{1}{2}$
- One day, the bus company decides to introduce some buses with a new color, red

■ Now we have blue bus, red bus, taxi
■ Red/blue bus is identical besides their color $\Rightarrow P_{R B}=P_{B B}$

- Due to IIA, we have: $P_{R B}=P_{B B}=P_{T}=\frac{1}{3}$
- You increase the probability of choosing bus by basically doing nothing

Nested Logit: Setting

Nested Logit: Setting

- To solve the Blue/Red bus issue, we introduce an extension of Logit model: Nested Logit Model
- We allow for correlations over some of the options
- We have utility of choice j to agent n can be expressed as:

$$
\begin{equation*}
U_{n j}=V_{n j}+\epsilon_{n j} \tag{10}
\end{equation*}
$$

- In nested logit, we have $\epsilon=\left(\epsilon_{n 1}, \ldots, \epsilon_{n J}\right)$ are jointly distributed as a generalized extreme value (GEV)

Nested Logit: Setting

■ To solve the Blue/Red bus issue, we introduce an extension of Logit model: Nested Logit Model

- We allow for correlations over some of the options
- We have utility of choice j to agent n can be expressed as:

$$
U_{n j}=V_{n j}+\epsilon_{n j}
$$

- In nested logit, we have $\epsilon=\left(\epsilon_{n 1}, \ldots, \epsilon_{n J}\right)$ are jointly distributed as a generalized extreme value (GEV)

Nested Logit: Setting

- To solve the Blue/Red bus issue, we introduce an extension of Logit model: Nested Logit Model
- We allow for correlations over some of the options

■ We have utility of choice j to agent n can be expressed as:

$$
\begin{equation*}
U_{n j}=V_{n j}+\epsilon_{n j} \tag{10}
\end{equation*}
$$

- In nested logit, we have $\epsilon=\left(\epsilon_{n 1}, \ldots, \epsilon_{n J}\right)$ are jointly distributed as a generalized extreme value (GEV)

Nested Logit: Setting

- To solve the Blue/Red bus issue, we introduce an extension of Logit model: Nested Logit Model
- We allow for correlations over some of the options

■ We have utility of choice j to agent n can be expressed as:

$$
\begin{equation*}
U_{n j}=V_{n j}+\epsilon_{n j} \tag{10}
\end{equation*}
$$

■ In nested logit, we have $\epsilon=\left(\epsilon_{n 1}, \ldots, \epsilon_{n J}\right)$ are jointly distributed as a generalized extreme value (GEV)

Nested Logit: Setting

Nested Logit: Setting

■ Let the choice set be partitioned into K subsets B_{1}, \ldots, B_{K} called nests

- CDF of $\epsilon=\left(\epsilon_{n 1}, \ldots, \epsilon_{n J}\right)$ is:

- Marginal distribution of each $\epsilon_{n j}$ is univariate T1EV
- Any two options within the same nest, have correlated
- Any two options in the different nests, have uncorrelated
- λ_{k} : measure of degree of independence
- Higher λ_{k}, less correlation of choices within the same nest

Nested Logit: Setting

■ Let the choice set be partitioned into K subsets B_{1}, \ldots, B_{K} called nests

- CDF of $\epsilon=\left(\epsilon_{n 1}, \ldots, \epsilon_{n J}\right)$ is:

$$
F(\epsilon)=\exp \left(-\sum_{k=1}^{K}\left(\sum_{j \in B_{k}} e^{-\frac{\epsilon_{n j}}{\lambda_{k}}}\right)^{\lambda_{k}}\right)
$$

- Marginal distribution of each $\epsilon_{n j}$ is univariate T1EV
- Any two options within the same nest, have correlated ϵ
- Any two options in the different nests, have uncorrelated
- λ_{k} : measure of degree of independence
- Higher λ_{k}, less correlation of choices within the same nest

Nested Logit: Setting

■ Let the choice set be partitioned into K subsets B_{1}, \ldots, B_{K} called nests

- CDF of $\epsilon=\left(\epsilon_{n 1}, \ldots, \epsilon_{n J}\right)$ is:

$$
F(\epsilon)=\exp \left(-\sum_{k=1}^{K}\left(\sum_{j \in B_{k}} e^{-\frac{\epsilon_{n j}}{\lambda_{k}}}\right)^{\lambda_{k}}\right)
$$

■ Marginal distribution of each $\epsilon_{n j}$ is univariate T1EV

- Any two options within the same nest, have correlated ϵ
- Any two options in the different nests, have uncorrelated
- λ_{k} : measure of degree of indenendence
- Higher λ_{k}, less correlation of choices within the same nest

Nested Logit: Setting

■ Let the choice set be partitioned into K subsets B_{1}, \ldots, B_{K} called nests

- CDF of $\epsilon=\left(\epsilon_{n 1}, \ldots, \epsilon_{n J}\right)$ is:

$$
F(\epsilon)=\exp \left(-\sum_{k=1}^{K}\left(\sum_{j \in B_{k}} e^{-\frac{\epsilon_{n j}}{\lambda_{k}}}\right)^{\lambda_{k}}\right)
$$

■ Marginal distribution of each $\epsilon_{n j}$ is univariate T1EV
■ Any two options within the same nest, have correlated ϵ

- Any two options in the different nests, have uncorrelated
- λ_{k} : measure of degree of independence
- Higher λ_{k}, less correlation of choices within the same nest

Nested Logit: Setting

■ Let the choice set be partitioned into K subsets B_{1}, \ldots, B_{K} called nests

- CDF of $\epsilon=\left(\epsilon_{n 1}, \ldots, \epsilon_{n J}\right)$ is:

$$
F(\epsilon)=\exp \left(-\sum_{k=1}^{K}\left(\sum_{j \in B_{k}} e^{-\frac{\epsilon_{n j}}{\lambda_{k}}}\right)^{\lambda_{k}}\right)
$$

■ Marginal distribution of each $\epsilon_{n j}$ is univariate T1EV

- Any two options within the same nest, have correlated ϵ

■ Any two options in the different nests, have uncorrelated ϵ

- λ_{k} : measure of degree of independence
- Higher λ_{k}, less correlation of choices within the same nest

Nested Logit: Setting

■ Let the choice set be partitioned into K subsets B_{1}, \ldots, B_{K} called nests

- CDF of $\epsilon=\left(\epsilon_{n 1}, \ldots, \epsilon_{n J}\right)$ is:

$$
F(\epsilon)=\exp \left(-\sum_{k=1}^{K}\left(\sum_{j \in B_{k}} e^{-\frac{\epsilon_{n j}}{\lambda_{k}}}\right)^{\lambda_{k}}\right)
$$

■ Marginal distribution of each $\epsilon_{n j}$ is univariate T1EV

- Any two options within the same nest, have correlated ϵ

■ Any two options in the different nests, have uncorrelated ϵ

- λ_{k} : measure of degree of independence
- Higher λ_{k}, less correlation of choices within the same nest

Nested Logit: Setting

■ Let the choice set be partitioned into K subsets B_{1}, \ldots, B_{K} called nests

- CDF of $\epsilon=\left(\epsilon_{n 1}, \ldots, \epsilon_{n J}\right)$ is:

$$
F(\epsilon)=\exp \left(-\sum_{k=1}^{K}\left(\sum_{j \in B_{k}} e^{-\frac{\epsilon_{n j}}{\lambda_{k}}}\right)^{\lambda_{k}}\right)
$$

- Marginal distribution of each $\epsilon_{n j}$ is univariate T1EV
- Any two options within the same nest, have correlated ϵ
- Any two options in the different nests, have uncorrelated ϵ
- λ_{k} : measure of degree of independence

■ Higher λ_{k}, less correlation of choices within the same nest

Nested Logit: Setting

Nested Logit: Setting

■ Homework 3: What does it mean when you have $\lambda_{k}=1, \forall k$? What is the model now? Why?

Nested Logit: Choice Probability

Nested Logit: Choice Probability

■ We can show that the choice probability of nested logit is:

$$
\begin{equation*}
P_{n i}=\frac{e^{V_{n i} / \lambda_{k}}\left(\sum_{j \in B_{k}} e^{V_{n i} / \lambda_{k}}\right)^{\lambda_{k}-1}}{\sum_{l=1}^{K}\left(\sum_{j \in B_{l}} e^{V_{n j} / \lambda_{l}}\right)^{\lambda_{l}-1}} \tag{11}
\end{equation*}
$$

- We have $\left(\sum_{j \in B_{k}} e^{V_{n j} / \lambda_{k}}\right)^{\lambda_{k}-1}$ in the numerator (Other choices in the same nest)
- Given two alternatives $i \in k$ and $m \in I$, we have the probability ratio as:

Nested Logit: Choice Probability

■ We can show that the choice probability of nested logit is:

$$
\begin{equation*}
P_{n i}=\frac{e^{V_{n i} / \lambda_{k}}\left(\sum_{j \in B_{k}} e^{V_{n i} / \lambda_{k}}\right)^{\lambda_{k}-1}}{\sum_{l=1}^{K}\left(\sum_{j \in B_{l}} e^{V_{n j} / \lambda_{l}}\right)^{\lambda_{l}-1}} \tag{11}
\end{equation*}
$$

- We have $\left(\sum_{j \in B_{k}} e^{V_{n j} / \lambda_{k}}\right)^{\lambda_{k}-1}$ in the numerator (Other choices in the same nest)
- Given two alternatives $i \in k$ and $m \in I$, we have the probability ratio as:

Nested Logit: Choice Probability

■ We can show that the choice probability of nested logit is:

$$
\begin{equation*}
P_{n i}=\frac{e^{V_{n i} / \lambda_{k}}\left(\sum_{j \in B_{k}} e^{V_{n i} / \lambda_{k}}\right)^{\lambda_{k}-1}}{\sum_{l=1}^{K}\left(\sum_{j \in B_{l}} e^{V_{n j} / \lambda_{l}}\right)^{\lambda_{l}-1}} \tag{11}
\end{equation*}
$$

- We have $\left(\sum_{j \in B_{k}} e^{V_{n j} / \lambda_{k}}\right)^{\lambda_{k}-1}$ in the numerator (Other choices in the same nest)
- Given two alternatives $i \in k$ and $m \in I$, we have the probability ratio as:

$$
\frac{P_{n i}}{P_{n m}}=\frac{e^{V_{n i} / \lambda_{k}}\left(\sum_{j \in B_{k}} e^{V_{n j} / \lambda_{k}}\right)^{\lambda_{k}-1}}{e^{V_{n m} / \lambda_{l}}\left(\sum_{j \in B_{l}} e^{V_{n j} / \lambda_{l}}\right)^{\lambda_{l}-1}}
$$

Nested Logit: IIN

- If $k=l$, we have IIA for two choices in the same nest

$$
\frac{P_{n i}}{P_{n m}}=\frac{e^{V_{n i} / \lambda_{k}}}{e^{V_{n m} / \lambda_{l}}}
$$

- If $k \neq 1$, we do not have IIA for two choices in different nests
- Relative probability of i, m is related to other choices in their own nests k and I
- But not choices in other nests
- We call it "Independence from Irrelevant Nests" (IIN)

Nested Logit: IIN

■ If $k=I$, we have IIA for two choices in the same nest

$$
\frac{P_{n i}}{P_{n m}}=\frac{e^{V_{n i} / \lambda_{k}}}{e^{V_{n m} / \lambda_{l}}}
$$

■ If $k \neq l$, we do not have IIA for two choices in different nests

- Relative probability of i, m is related to other choices in their own nests k and /
- But not choices in other nests
- We call it "Independence from Irrelevant Nests" (IIN)

Nested Logit: IIN

- If $k=l$, we have IIA for two choices in the same nest

$$
\frac{P_{n i}}{P_{n m}}=\frac{e^{V_{n i} / \lambda_{k}}}{e^{V_{n m} / \lambda_{l}}}
$$

■ If $k \neq l$, we do not have IIA for two choices in different nests

- Relative probability of i, m is related to other choices in their own nests k and $/$
- But not choices in other nests
- We call it "Independence from Irrelevant Nests" (IIN)

Nested Logit: IIN

■ If $k=I$, we have IIA for two choices in the same nest

$$
\frac{P_{n i}}{P_{n m}}=\frac{e^{V_{n i} / \lambda_{k}}}{e^{V_{n m} / \lambda_{l}}}
$$

- If $k \neq l$, we do not have IIA for two choices in different nests
- Relative probability of i, m is related to other choices in their own nests k and $/$
- But not choices in other nests
- We call it "Independence from Irrelevant Nests" (IIN)

Nested Logit: IIN

■ If $k=I$, we have IIA for two choices in the same nest

$$
\frac{P_{n i}}{P_{n m}}=\frac{e^{V_{n i} / \lambda_{k}}}{e^{V_{n m} / \lambda_{l}}}
$$

- If $k \neq l$, we do not have IIA for two choices in different nests

■ Relative probability of i, m is related to other choices in their own nests k and $/$

- But not choices in other nests

■ We call it "Independence from Irrelevant Nests" (IIN)

Nested Logit: An Example

Figure 4.1. Tree diagram for mode choice.

Nested Logit: An Example

- Auto=(Auto alone, Carpool), Transit=(Bus, Rail)

Figure 4.1. Tree diagram for mode choice.

Nested Logit: Decomposition

Nested Logit: Decomposition

- Nested Logit can be decomposed into two Logits
- Assume that we have utility

$$
U_{n j}=W_{n k}+Y_{n j}+\epsilon_{n j}
$$

- $W_{n k}$ nest-level value; $Y_{n j}$ option-level value; ϵ follows GEV
- We can decompose the choice probability as:

- Expected utility of all choices in nest $k: I_{n k}=\ln \sum_{j \in B_{k}}$

Nested Logit: Decomposition

- Nested Logit can be decomposed into two Logits
- Assume that we have utility

$$
U_{n j}=W_{n k}+Y_{n j}+\epsilon_{n j}
$$

- $W_{n k}$ nest-level value; $Y_{n j}$ option-level value; ϵ follows GEV
- We can decompose the choice probability as:

- Expected utility of all choices in nest $k: I_{n k}=\ln \sum_{j \in B_{k}}$

Nested Logit: Decomposition

■ Nested Logit can be decomposed into two Logits

- Assume that we have utility

$$
U_{n j}=W_{n k}+Y_{n j}+\epsilon_{n j}
$$

- $W_{n k}$ nest-level value; $Y_{n j}$ option-level value; ϵ follows GEV
- We can decompose the choice probability as:

- Expected utility of all choices in nest k

Nested Logit: Decomposition

- Nested Logit can be decomposed into two Logits
- Assume that we have utility

$$
U_{n j}=W_{n k}+Y_{n j}+\epsilon_{n j}
$$

- $W_{n k}$ nest-level value; $Y_{n j}$ option-level value; ϵ follows GEV
- We can decompose the choice probability as:

$$
\begin{aligned}
P_{n i} & =P_{n i \mid B_{k}} P_{n B_{k}} \\
& =\frac{e^{Y_{n i} / \lambda_{k}}}{\sum_{j \in B_{k}} e^{Y_{n j} / \lambda_{k}}} \cdot \frac{e^{W_{n k}+\lambda_{k} I_{n k}}}{\sum_{l=1}^{K} e^{W_{n l}+\lambda_{l} I_{n l}}}
\end{aligned}
$$

- Expected utility of all choices in nest $k: I_{n k}=\ln \sum_{j \in B_{k}} e$

Nested Logit: Decomposition

- Nested Logit can be decomposed into two Logits
- Assume that we have utility

$$
U_{n j}=W_{n k}+Y_{n j}+\epsilon_{n j}
$$

- $W_{n k}$ nest-level value; $Y_{n j}$ option-level value; ϵ follows GEV
- We can decompose the choice probability as:

$$
\begin{aligned}
P_{n i} & =P_{n i \mid B_{k} P_{n B_{k}}} \\
& =\frac{e^{Y_{n i} / \lambda_{k}}}{\sum_{j \in B_{k}} e^{Y_{n j} / \lambda_{k}}} \cdot \frac{e^{W_{n k}+\lambda_{k} I_{n k}}}{\sum_{l=1}^{K} e^{W_{n I}+\lambda_{l} I_{n l}}}
\end{aligned}
$$

- Expected utility of all choices in nest $k: I_{n k}=\ln \sum_{j \in B_{k}} e^{Y_{n j} / \lambda_{k}}$

Nested Logit: Decomposition

Nested Logit: Decomposition

- Thus, you can estimate the parameters in two steps
- First, estimate parameters in $P_{n i \mid B_{k}}$
- Second, given first step estimated parameters, we calculate $I_{n k}$
- Then we estimate parameters in $P_{n B_{k}}$

Nested Logit: Decomposition

- Thus, you can estimate the parameters in two steps

■ First, estimate parameters in $P_{n i \mid B_{k}}$

- Second, given first step estimated parameters, we calculate $I_{n k}$
- Then we estimate parameters in $P_{n B_{k}}$

Nested Logit: Decomposition

- Thus, you can estimate the parameters in two steps

■ First, estimate parameters in $P_{n i \mid B_{k}}$
■ Second, given first step estimated parameters, we calculate $I_{n k}$

- Then we estimate parameters in $P_{n B_{k}}$

Nested Logit: Decomposition

- Thus, you can estimate the parameters in two steps

■ First, estimate parameters in $P_{n i \mid B_{k}}$

- Second, given first step estimated parameters, we calculate $I_{n k}$
- Then we estimate parameters in $P_{n B_{k}}$

Conclusion: Logit or LPM?

Conclusion: Logit or LPM?

- An important practical question is, when to use Logit? When to use linear probability model (LPM)?
- Let's first list pros and cons

■ For Logit: non-linear fitting with functional form assumption

- For LPM: linear fitting, more an approximation

Conclusion: Logit or LPM?

- An important practical question is, when to use Logit? When to use linear probability model (LPM)?
■ Let's first list pros and cons
- For Logit: non-linear fitting with functional form assumption
- For LPM: linear fitting, more an approximation

Conclusion: Logit or LPM?

- An important practical question is, when to use Logit? When to use linear probability model (LPM)?
- Let's first list pros and cons

■ For Logit: non-linear fitting with functional form assumption

- Coefficients are "structural" and primitive \Rightarrow Utility, Production.
- But coefficients are neither marginal effects nor weighted treatment effects
- Computationally intensive: especially MLE for high-dimensional dummies
- For LPM: linear fitting, more an approximation

Conclusion: Logit or LPM?

- An important practical question is, when to use Logit? When to use linear probability model (LPM)?
- Let's first list pros and cons

■ For Logit: non-linear fitting with functional form assumption

- Coefficients are "structural" and primitive \Rightarrow Utility, Production...
- But coefficients are neither marginal effects nor weighted treatment effects
- Computationally intensive: especially MLE for high-dimensional dummies
- For LPM: linear fitting, more an approximation

Conclusion: Logit or LPM?

- An important practical question is, when to use Logit? When to use linear probability model (LPM)?
■ Let's first list pros and cons
■ For Logit: non-linear fitting with functional form assumption
■ Coefficients are "structural" and primitive \Rightarrow Utility, Production...
- But coefficients are neither marginal effects nor weighted treatment effects
- Computationally intensive: especially MLE for high-dimensional dummies
- For LPM: linear fitting, more an approximation

Conclusion: Logit or LPM?

- An important practical question is, when to use Logit? When to use linear probability model (LPM)?
- Let's first list pros and cons

■ For Logit: non-linear fitting with functional form assumption

- Coefficients are "structural" and primitive \Rightarrow Utility, Production...
- But coefficients are neither marginal effects nor weighted treatment effects
- Computationally intensive: especially MLE for high-dimensional dummies
- For LPM: linear fitting, more an approximation

Conclusion: Logit or LPM?

- An important practical question is, when to use Logit? When to use linear probability model (LPM)?
■ Let's first list pros and cons
■ For Logit: non-linear fitting with functional form assumption
- Coefficients are "structural" and primitive \Rightarrow Utility, Production...
- But coefficients are neither marginal effects nor weighted treatment effects
- Computationally intensive: especially MLE for high-dimensional dummies
- For LPM: linear fitting, more an approximation
- Coefficients are marginal effects, very easy to interpret
- But will predict probability >1 or <0
- Computationally simple: OLS regression

Conclusion: Logit or LPM?

- An important practical question is, when to use Logit? When to use linear probability model (LPM)?
■ Let's first list pros and cons
■ For Logit: non-linear fitting with functional form assumption
- Coefficients are "structural" and primitive \Rightarrow Utility, Production...
- But coefficients are neither marginal effects nor weighted treatment effects
- Computationally intensive: especially MLE for high-dimensional dummies
- For LPM: linear fitting, more an approximation
- Coefficients are marginal effects, very easy to interpret
- But will predict probability > 1 or < 0
- Computationally simple: OLS regression

Conclusion: Logit or LPM?

- An important practical question is, when to use Logit? When to use linear probability model (LPM)?
■ Let's first list pros and cons
■ For Logit: non-linear fitting with functional form assumption
- Coefficients are "structural" and primitive \Rightarrow Utility, Production...
- But coefficients are neither marginal effects nor weighted treatment effects
- Computationally intensive: especially MLE for high-dimensional dummies
- For LPM: linear fitting, more an approximation
- Coefficients are marginal effects, very easy to interpret
- But will predict probability >1 or <0
- Computationally simple: OLS regression

Conclusion: Logit or LPM?

- An important practical question is, when to use Logit? When to use linear probability model (LPM)?
- Let's first list pros and cons

■ For Logit: non-linear fitting with functional form assumption

- Coefficients are "structural" and primitive \Rightarrow Utility, Production...
- But coefficients are neither marginal effects nor weighted treatment effects
- Computationally intensive: especially MLE for high-dimensional dummies
- For LPM: linear fitting, more an approximation
- Coefficients are marginal effects, very easy to interpret
- But will predict probability > 1 or <0
- Computationally simple: OLS regression

Conclusion: Logit or LPM?

Here are some personal views

Conclusion: Logit or LPM?

Here are some personal views

Conclusion: Logit or LPM?

Here are some personal views

- If you do care about the primitive parameter \Rightarrow Logit
- If you are interested in extrapolating your prediction (predict y for x with few samples nearby) \Rightarrow Logit
- If you have x distributed pretty uniformly over the range, while want to predict y for very small or very large $x \Rightarrow$ Logit
- Otherwise, you can choose LPM

Conclusion: Logit or LPM?

Here are some personal views
■ If you do care about the primitive parameter \Rightarrow Logit

- If you are interested in extrapolating your prediction (predict y for x with few samples nearby) \Rightarrow Logit
- If you have x distributed pretty uniformly over the range, while want to predict y for very small or very large $x \Rightarrow$ Logit
- Otherwise, you can choose LPM

Conclusion: Logit or LPM?

Here are some personal views
■ If you do care about the primitive parameter \Rightarrow Logit

- If you are interested in extrapolating your prediction (predict y for x with few samples nearby) \Rightarrow Logit
■ If you have x distributed pretty uniformly over the range, while want to predict y for very small or very large $x \Rightarrow$ Logit
- Otherwise, you can choose LPM

Conclusion: Logit or LPM?

Here are some personal views
■ If you do care about the primitive parameter \Rightarrow Logit

- If you are interested in extrapolating your prediction (predict y for x with few samples nearby) \Rightarrow Logit
■ If you have x distributed pretty uniformly over the range, while want to predict y for very small or very large $x \Rightarrow$ Logit
- Otherwise, you can choose LPM

Conclusion: Main Takeaways

Main Takeaways

Conclusion: Main Takeaways

Main Takeaways

Conclusion: Main Takeaways

Main Takeaways

- Logit is intrinsically a structural approach, whose parameters have structural meaning
- Logit is a special kind of DCM when the error is T1EV distributed
- Logit is convenient since it has closed-form choice probability and expected utility
- Logit has a property of IIA, that the relative probability of two choices is not affected by the third one
- The interpretation of Logit (or in general, non-linear model) is not as straightforward as Linear probability model

Conclusion: Main Takeaways

Main Takeaways
■ Logit is intrinsically a structural approach, whose parameters have structural meaning
■ Logit is a special kind of DCM when the error is T1EV distributed

- Logit is convenient since it has closed-form choice probability and expected utility
- Logit has a property of IIA, that the relative probability of two choices is not affected by the third one
- The interpretation of Logit (or in general, non-linear model) is not as straightforward as Linear probability model

Conclusion: Main Takeaways

Main Takeaways
■ Logit is intrinsically a structural approach, whose parameters have structural meaning
■ Logit is a special kind of DCM when the error is T1EV distributed

- Logit is convenient since it has closed-form choice probability and expected utility
- Logit has a property of IIA, that the relative probability of two choices is not affected by the third one
- The interpretation of Iogit (or in general, non-linear model) is not as straightforward as Linear probability model

Conclusion: Main Takeaways

Main Takeaways
■ Logit is intrinsically a structural approach, whose parameters have structural meaning
■ Logit is a special kind of DCM when the error is T1EV distributed

- Logit is convenient since it has closed-form choice probability and expected utility

■ Logit has a property of IIA, that the relative probability of two choices is not affected by the third one

- The interpretation of Logit (or in general, non-linear model) is not as straightforward as Linear probability model

Conclusion: Main Takeaways

Main Takeaways
■ Logit is intrinsically a structural approach, whose parameters have structural meaning
■ Logit is a special kind of DCM when the error is T1EV distributed

- Logit is convenient since it has closed-form choice probability and expected utility

■ Logit has a property of IIA, that the relative probability of two choices is not affected by the third one

- The interpretation of Logit (or in general, non-linear model) is not as straightforward as Linear probability model

Conclusion: Main Takeaways

Conclusion: Main Takeaways

■ Nested Logit is a more general model than Logit

- We assume GEV: choices within the same nest have correlated
- IIA for two choices within the same nest but not across different nests
- For two choices across different nests, we have IIN

Conclusion: Main Takeaways

■ Nested Logit is a more general model than Logit

- We assume GEV: choices within the same nest have correlated ϵ
- IIA for two choices within the same nest but not across different nests
- For two choices across different nests, we have IIN

Conclusion: Main Takeaways

■ Nested Logit is a more general model than Logit

- We assume GEV: choices within the same nest have correlated ϵ

■ IIA for two choices within the same nest but not across different nests

- For two choices across different nests, we have IIN

Conclusion: Main Takeaways

■ Nested Logit is a more general model than Logit

- We assume GEV: choices within the same nest have correlated ϵ

■ IIA for two choices within the same nest but not across different nests

- For two choices across different nests, we have IIN

