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Machine Learning and Model Selection: Introduction

In the last lecture, we learn some non-parametric and semi-parametric methods

We now have many tools in our box beyond linear regression

Kernel regression, local polynomial regression
Series regression, partial linear regression
etc...

Which method should we choose?
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Machine Learning and Model Selection: Introduction

Even for a given method, such as simple regression

The functional form is still flexible

Why linear? Simple? Why not y = lnx + x
3 + e?

What covariates to include?
In Mincer equation, we regression wage on edu, exp, and exp

2
. Why not edu

3
?
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Machine Learning and Model Selection: Introduction

Model selection issue has been ignored in applied economics for such a long time

More due to data availability issue

Nowadays, more and more datasets are available with huge sizes

BIG DATA! More chances!

We should seriously consider model selection issue

Let’s first introduce a major statistical concept: Bias-variance tradeoff
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Machine Learning and Model Selection: Bias-variance Tradeoff

A traditional linear model

y = xβ + ϵ (1)

A model with quadratic term

y = xβ + x
2
α + ϵ (2)

A non-parametric model

y = g(x) + ϵ (3)

Why not always the second or the third one?
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y = x
′
1β + ϵ (4)
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y = x
′
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′
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Why not always the second one?

Always better to have a more complicated model?
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Machine Learning and Model Selection: Bias-variance Tradeoff

Model Selection: Bias vs. Variance
Assume that:

Y = f (X ) + ϵ

f̂ (x) is a model trained by some data

It will be changed when sample is changed: f̂ 1(x), f̂ 2(x)...
Expectation E[f̂ (x)] is taken over different samples

How good is the model?
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Machine Learning and Model Selection: Bias-variance Tradeoff

The prediction error at some point x0:

E[(Y − f̂ (x0))2∣X = x0] = σ
2
ϵ + [E f̂ (x0) − f (x0)]2 + E[f̂ (x0) − E f̂ (x0)]2

= irreducible error + Bias
2
+ Variance

Model complexity ⇒ Bias ↓, Variance ↑

Super complicated model ⇒ Variance ↑↑↑ (very sensitive when data change)

Overfit current data ⇒ Poor out-of-sample prediction
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Machine Learning and Model Selection: An Example of Overfitting

Consider a data generating process

Y = 1 + 1.5X + ϵ

ϵ ∼ N(0, 100)

It is a noisy process.

Simulate 30 observations from this process

Let’s start to fit it with different polynomials

Green line is the true DGP

Red line is the fitting function

9 / 50
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Machine Learning and Model Selection: An Example of Overfitting

Figure: First Order (Linear) Fitting
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Machine Learning and Model Selection: An Example of Overfitting

Figure: Second Order (Quadratic) Fitting
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Machine Learning and Model Selection: An Example of Overfitting

Figure: Third Order (Cubic) Fitting
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Machine Learning and Model Selection: An Example of Overfitting

Figure: Fourth Order Fitting
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Machine Learning and Model Selection: An Example of Overfitting

Figure: Fifth Order Fitting
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Machine Learning and Model Selection: An Example of Overfitting

Figure: Sixth Order Fitting
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Machine Learning and Model Selection: An Example of Overfitting

Figure: Twentieth Order Fitting
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Machine Learning and Model Selection: An Example of Overfitting

High order polynomials: Picking up noises, not signals!!!
Bad out-of-sample prediction!!!
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Machine Learning and Model Selection: An Example of Overfitting

We have actually learned two kinds of overfitting

Runge phenomenon and Gibbs phenomenon
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Machine Learning and Model Selection: Goodness of Fit

There are many ways to measure the goodness of fit, considering overfitting

Adjusted R-squared: the proportion of explained variations in y
Still remember why we need to adjust for the number of regressors?

AIC: Akaike Information Criterion
AIC = 2k + nln(RSS/n), k is the number of regressors

BIC: Bayesian Information Criterion
This is motivated by the Bayesian approach to model selection
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Machine Learning and Model Selection: Goodness of Fit

Another important measure is Cross-Validation (CV)

The basic idea is to separate all samples into training sample and validation
sample

Training sample is used to train (estimate) the model

Validation sample is then used to check the ”out-of-sample” prediction

We delibrately leave some observations out of estimation

They can be used to check the model fit and avoid overfitting

20 / 50



Machine Learning and Model Selection: Goodness of Fit

Another important measure is Cross-Validation (CV)

The basic idea is to separate all samples into training sample and validation
sample

Training sample is used to train (estimate) the model

Validation sample is then used to check the ”out-of-sample” prediction

We delibrately leave some observations out of estimation

They can be used to check the model fit and avoid overfitting

20 / 50



Machine Learning and Model Selection: Goodness of Fit

Another important measure is Cross-Validation (CV)

The basic idea is to separate all samples into training sample and validation
sample

Training sample is used to train (estimate) the model

Validation sample is then used to check the ”out-of-sample” prediction

We delibrately leave some observations out of estimation

They can be used to check the model fit and avoid overfitting

20 / 50



Machine Learning and Model Selection: Goodness of Fit

Another important measure is Cross-Validation (CV)

The basic idea is to separate all samples into training sample and validation
sample

Training sample is used to train (estimate) the model

Validation sample is then used to check the ”out-of-sample” prediction

We delibrately leave some observations out of estimation

They can be used to check the model fit and avoid overfitting

20 / 50



Machine Learning and Model Selection: Goodness of Fit

Another important measure is Cross-Validation (CV)

The basic idea is to separate all samples into training sample and validation
sample

Training sample is used to train (estimate) the model

Validation sample is then used to check the ”out-of-sample” prediction

We delibrately leave some observations out of estimation

They can be used to check the model fit and avoid overfitting

20 / 50



Machine Learning and Model Selection: Goodness of Fit

Another important measure is Cross-Validation (CV)

The basic idea is to separate all samples into training sample and validation
sample

Training sample is used to train (estimate) the model

Validation sample is then used to check the ”out-of-sample” prediction

We delibrately leave some observations out of estimation

They can be used to check the model fit and avoid overfitting

20 / 50



Machine Learning and Model Selection: Goodness of Fit

Another important measure is Cross-Validation (CV)

The basic idea is to separate all samples into training sample and validation
sample

Training sample is used to train (estimate) the model

Validation sample is then used to check the ”out-of-sample” prediction

We delibrately leave some observations out of estimation

They can be used to check the model fit and avoid overfitting

20 / 50



Machine Learning and Model Selection: Goodness of Fit

Here is the process of CV

First, we separate all samples into K parts

Each time, we choose K-1 parts to train (estimate) the model

We then use the remaining one part k to calculate the mean squared predicted
error MSEk

We rotate the samples K times so that each part is used as the validation sample
once, and have K pieces of MSEk

We take the average of them to have: CV =
1
k
∑K

k=1MSEk

This is called ”K-fold Cross-Validation”
21 / 50
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Machine Learning and Model Selection: Goodness of Fit

CV measures the goodness of the out-of-sample prediction

It mimics a situation when you have some data that is not used in the estimation
to check your estimation validity

It helps you to determine which model fits better to the data, in terms of
out-of-sample prediction

Smaller CV means better fitting
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Machine Learning and Model Selection: Goodness of Fit

Now we have some measures of goodness

That is, the ”standard” of what is a ”good” model

Would that be possible to have an automatic algorithm to find a good model for
us?

This is what machine learning is all about
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Machine Learning and Model Selection: Machine Learning

What is machine learning?
”Machine learning (ML) is an umbrella term for solving problems for which
development of algorithms by human programmers would be cost-prohibitive, and
instead the problems are solved by helping machines ’discover’ their ’own’
algorithms, without needing to be explicitly told what to do by any
human-developed algorithms.” from Wikipedia
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Machine Learning and Model Selection: Machine Learning

Machine learning usage in Economics

Main target: How complicated the model should be? How to predict Y given X?

When Y is discrete: Classification

When Y is continuous: Prediction

There are so many machine learning algorithms

We briefly introduce three of them: Penalized regression, Tree-based method,
Neural network
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Machine Learning and Model Selection: Penalized Regressions

Let’s consider a linear regression

What if I have so many potential regressors?

For instance, you have a household survey with 1000 questions

Is there an automatic way to select the best predictors?
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Machine Learning and Model Selection: Penalized Regressions

Linear function: yi = x
′
iβ + ϵi

OLS: β̂
OLS

= argmin∑i(yi − x
′
iβ)2

All regressors x play roles.

We estimate β by minimizing SSR ⇒ More β means smaller SSR

We need a mechanism to penalize the usage of β
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Machine Learning and Model Selection: Penalized Regressions

Penalized: β̂
Pen

= argmin∑i(yi − x
′
iβ)2 + λ(∥β∥p)p

p=1: Lasso regression, drop some x with small prediction power
p=2: Ridge regression, shrink some x with small prediction power

λ: tuning parameter, how strong we penalize additional ”x”

How to choose λ? Cross-validation

Combination: Elastic Net
β̂
Pen

= argmin∑i(yi − x
′
iβ)2 + λ(α∥β∥1 + (1 − α)(∥β∥2)2)
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Machine Learning and Model Selection: Tree-based Method

Tree-based methods partition the feature (X) space into a set of rectangles, and
then fit a simple model (constant) in each one.

Classification and Regression Tree (CART)

Partition into regions R1,R2...RM , assign average value in a region as the
predicted value
f̂ (xi) = ∑M

m=1 cmI (x ∈ Rm)
How to partition (Grow the tree)?
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Machine Learning and Model Selection: Tree-based Method

We use recursive binary partitions

(X1, t1) → ((X2, t2), (X1, t3)) → (X2, t4)
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Machine Learning and Model Selection: Tree-based Method

Two choices: continue partitioning or stop + where to partition

Greedy algorithm

For each region Rm (leaf), we define:

Size (# of obs): Nm = {xi ∈ Rm}

Fitted value (mean as fit): ĉm =
1

Nm
∑

x∈Rm

yi

SSE (error in leaf): Qm(T ) = 1

Nm
∑

x∈Rm

(yi − ĉm)2
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Machine Learning and Model Selection: Tree-based Method

First, conditional on continuing grow, how to determine partition?

For j − th predictor, cut position s

Define half plane R1(j , s) = {X ∣Xj ≤ s},R2(j , s) = {X ∣Xj > s}
How to find (j,s) in each branch? Minimize SSE (Easy)

min
j ,s

[min
c1

∑
xi∈R1(j ,s)

(yi − c1)2 +min
c2

∑
xi∈R2(j ,s)

(yi − c2)2]

Here c1 and c2 are conditional means (in leaf 1 and 2)
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Machine Learning and Model Selection: Tree-based Method

Second, how to choose to continue growing the tree or stop?

Too large → Overfitting; Too small → Losing information

Grow a big tree T0, then prune it!

Step 1: Grow T0 when some minimum node size is reached (say 10)
Step 2: Pruning. Choose the tree T ⊂ T0 with the lowest cost function Cα(T ).
T ⊂ T0 means any tree T that can be obtained by collapsing any number of internal
nodes in T0
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Machine Learning and Model Selection: Tree-based Method

Cα(T ) =
∣T ∣
∑
m=1

NmQm(T ) + α∣T ∣

α as the tuning parameter; ∣T ∣ as number of terminal nodes

Total SSE (bias) + Size penalty

α determines how hard to penalize tree size

34 / 50



Machine Learning and Model Selection: Tree-based Method

Cα(T ) =
∣T ∣
∑
m=1

NmQm(T ) + α∣T ∣

α as the tuning parameter; ∣T ∣ as number of terminal nodes

Total SSE (bias) + Size penalty

α determines how hard to penalize tree size

34 / 50



Machine Learning and Model Selection: Tree-based Method

Cα(T ) =
∣T ∣
∑
m=1

NmQm(T ) + α∣T ∣

α as the tuning parameter; ∣T ∣ as number of terminal nodes

Total SSE (bias) + Size penalty

α determines how hard to penalize tree size

34 / 50



Machine Learning and Model Selection: Random Forests

Using sub-sampling or bagging to reduce variance of a single tree

Draw a lot of different samples (1,2,...B) with sub-sampling (n < N) (Jackknife)
or bagging (n = N) (Bootstrap)

De-correlation: In each split, randomly select m variables to do the partition

f̂
B(x) = 1

B

B

∑
b=1

Tb(x)

V (f̂ ) ≈ ρσ
2
+

1 − ρ

B
σ
2

Random Forests = Tree Method + Sampling average (Many De-correlated Trees)

To reduce V (f̂ ): B ↑ (more sampling), ρ ↓ (smaller correlation)
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Machine Learning and Model Selection: Random Forests
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Machine Learning and Model Selection: Random Forests

We reduce the variance by bagging (B) and de-correlation (ρ)

This is a method similar to kernels and nearest-neighbor method
Making predictions using weighted averages of ”nearby” observations

Difference: Weighting scheme
Nearest Neighbor: Not adaptive; Random Forests: Adaptive

An important application of Random Forests in Economics is Causal Forests
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Machine Learning and Model Selection: Causal Forests

Main topic in causal inference: Treatment effect
Mostly ATE, LATE etc.

Heterogeneous Treatment Effect
Cherry picking? ⇒ Institutional restrictions on trials

Unexpected heterogeneity

Wager and Athey develop a machine learning tool, Causal Forests (An extension
of Random Forests)

To reveal the true underlying heterogeneous treatment effects
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Machine Learning and Model Selection: Causal Forests

It tells us how to divide groups to get the ”real” heterogeneous TE

Data of (Xi ,Yi ,Wi), Wi is treatment assignment. L as a leaf (region).

Treatment effect: τ(x) = E[Y (1)
i − Y

(0)
i ∣Xi = x]

Unconfoundness: {Y (0)
i ,Y

(1)
i } ⊥ Wi ∣Xi
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Machine Learning and Model Selection: Causal Forests

Estimation of TE: Given x in leaf L(x), the difference of the average outcome Y
for treated/non-treated group

τ̂(x) = 1
∣{i∶Wi=1,Xi∈L}∣

Yi

∑
{i∶Wi=1,Xi∈L}

Yi −
1

∣{i∶Wi=0,Xi∈L}∣

Yi

∑
{i∶Wi=0,Xi∈L}

Yi

Implement the Random Forests using a criterion: maximizing variance of τ̂(Xi)
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Machine Learning and Model Selection: Causal Forests

A tree is honesty, if for each training example i , it is either used to estimate τ or
used to decide splits

Double-Sample Trees: Averagely divide samples into two parts I and J. Grow the
tree using I and then estimate τ in each leaf using J.

Honest Causal Forests is consistent and asymptotically normal
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Machine Learning and Model Selection: Application of Causal Forests

Paper report
Levy (2021) Social Media, News Consumption, and Polarization: Evidence from a
Field Experiment

Please also read Online Appendix C.5
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Machine Learning and Model Selection: Neural Networks

Another widely used machine learning method is Neural Networks

It attracts people’s attention during these days in media

AI, AlphaGo...Sky Net (kidding)

43 / 50



Machine Learning and Model Selection: Neural Networks

Another widely used machine learning method is Neural Networks

It attracts people’s attention during these days in media

AI, AlphaGo...Sky Net (kidding)

43 / 50



Machine Learning and Model Selection: Neural Networks

Another widely used machine learning method is Neural Networks

It attracts people’s attention during these days in media

AI, AlphaGo...Sky Net (kidding)

43 / 50



Machine Learning and Model Selection: Neural Networks

Another widely used machine learning method is Neural Networks

It attracts people’s attention during these days in media

AI, AlphaGo...Sky Net (kidding)

43 / 50



Machine Learning and Model Selection: Neural Networks

Consider a single layer classification model, where Yk refers to each choice/class

X - Input; Z- Hidden layer/unit; Y - Output
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Machine Learning and Model Selection: Neural Networks

Step 1: from input X to hidden unit Z

Zm = σ(α0m + α
T
mX ),m = 1, ...,M

σ is a nonlinear function (Step or Logit)

Step 2: from hidden unit Z to output Y

Tk = β0k + β
T
k Z , k = 1, ...,K

fk(X ) = gk(T ), k = 1, ...,K

g is a nonlinear function (Step or Logit)

45 / 50



Machine Learning and Model Selection: Neural Networks

Step 1: from input X to hidden unit Z

Zm = σ(α0m + α
T
mX ),m = 1, ...,M

σ is a nonlinear function (Step or Logit)

Step 2: from hidden unit Z to output Y

Tk = β0k + β
T
k Z , k = 1, ...,K

fk(X ) = gk(T ), k = 1, ...,K

g is a nonlinear function (Step or Logit)

45 / 50



Machine Learning and Model Selection: Neural Networks

Step 1: from input X to hidden unit Z

Zm = σ(α0m + α
T
mX ),m = 1, ...,M

σ is a nonlinear function (Step or Logit)

Step 2: from hidden unit Z to output Y

Tk = β0k + β
T
k Z , k = 1, ...,K

fk(X ) = gk(T ), k = 1, ...,K

g is a nonlinear function (Step or Logit)

45 / 50



Machine Learning and Model Selection: Neural Networks

Step 1: from input X to hidden unit Z

Zm = σ(α0m + α
T
mX ),m = 1, ...,M

σ is a nonlinear function (Step or Logit)

Step 2: from hidden unit Z to output Y

Tk = β0k + β
T
k Z , k = 1, ...,K

fk(X ) = gk(T ), k = 1, ...,K

g is a nonlinear function (Step or Logit)

45 / 50



Machine Learning and Model Selection: Neural Networks

Step 1: from input X to hidden unit Z

Zm = σ(α0m + α
T
mX ),m = 1, ...,M

σ is a nonlinear function (Step or Logit)

Step 2: from hidden unit Z to output Y

Tk = β0k + β
T
k Z , k = 1, ...,K

fk(X ) = gk(T ), k = 1, ...,K

g is a nonlinear function (Step or Logit)

45 / 50



Machine Learning and Model Selection: Neural Networks

Why do we call this Neural Networks?

Because it was first developed as models for the human brain

Each unit represents a neuron

Connections are synapses

There can be multiple layers

When step function is used for σ and g , neurons fire when signal passed to the
unit (α0m + α

T
mX ) exceeds some threshold
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Machine Learning and Model Selection: Neural Networks

How to estimate this model?

Simply nonlinear Least Square

How to avoid overfitting?

Regularize the optimization problem minR(θ) with a penalty term:

minR(θ) + λJ(θ)
J(θ) = ∑

km

β
2
km +∑

ml

α
2
mp

λ is a tuning parameter
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Machine Learning and Model Selection: Conclusion

Model complexity is double-edged: Bias-variance tradeoff

In general, there are many standards to evaluate model’s goodness-of-fit
CV, AIC, BIC

Machine learning gives you automatic algorithms to select model
Penalized regression, Tree-based method (Random Forests), Neural Networks

An important new application in economics is Causal Forests
Can be used to detect heterogeneous treatment effect
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Machine Learning and Model Selection: Conclusion

But remember, these are only statistical tools

The most important method is still your ECONOMIC intuition!

Never exclude education from a wage equation, even if AIC/BIC told you so!
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Machine Learning and Model Selection: Conclusion

In this lecture, we focus on model selection conditional on Unconfoundness
assumption

Thus, we discuss more on model prediction but not causal structure

Next lecture, we will turn to variable (model) selection based on our proposed
causal structure

We will introduce a new tool to deal with this issue: Causal Graph
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