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Non-parametric Method: Introduction

Common Parametric Models
Linear Model: y = X

′
β + e, e ∼ N(0, σ2);

Probit/Logit Model: P(y∣X ) = G(Xβ) where G is a nonlinear function

Explicit Parametric Structure for Distribution

Common Estimator
OLS, MLE, Nonlinear LS, Efficient GMM etc.

Key Properties of the Estimator
Consistency, BLUE, Asymptotic Efficiency etc.
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Non-parametric Method: Introduction

In linear regression, we have to assume that CEF is linear

Why linear? Simple? Why not y = x
3 ⋅ lnx + e?

What if linear specification is wrong?

Everything collapses. No data can save.

It becomes only a linear approximation

For example, if true model is Logit, but not linear regression
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Non-parametric Method: Introduction

Potential Outcome Model is intrinsically NON-parametric!!!

There are many other statistical modeling methods

Non-parametric, semi-parametric

To understand tools beyond linear regression!
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Non-parametric Method: Introduction

Let’s forget about the model functional form

Give up the ”parametric” model like linear regression

Do not assume that CEF is linear

Go back to the original question to estimate E(yi ∣xi) without imposing any
functional form assumption
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Non-parametric Method: Introduction

Notation: xi , yi denotes random variable; Xi ,Yi denotes realizations; x , y denotes
random variables or some value of the random variables

Realizations are given (sample), they are NOT random in our context
∫ x ∑n

i Xidx = ∑n
i Xi ∫ xdx
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Non-parametric Method: Kernel Regression

Let’s consider the first non-parametric method: Kernel regression

It is super intuitive and interesting

Instead of assuming E(yi ∣xi) = x
′
iβ, we consider this CEF point by point

That is, estimate E(yi ∣xi) for each possible point of xi = x
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Non-parametric Method: Kernel Regression

Step 1: Estimating a cumulative density

Consider estimating a cumulative density function (CDF)

What is the CDF at x = 3? F̂ (x = 3) =?
Go back to kindergarten!
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Non-parametric Method: Kernel Regression

Just count how many points lie on the left to the red line:

F̂ (x = 3) = 1
n ∑ 1(Xi ≤ 3)

In general, we have an estimation of F (x) as:

F (x) = P(X ≤ x) ⇒ F̂ (x) = 1
n

n

∑
i=1

1(Xi ≤ x)

The proportion of points (realizations) that are smaller than x

9 / 47



Non-parametric Method: Kernel Regression

Just count how many points lie on the left to the red line:

F̂ (x = 3) = 1
n ∑ 1(Xi ≤ 3)

In general, we have an estimation of F (x) as:

F (x) = P(X ≤ x) ⇒ F̂ (x) = 1
n

n

∑
i=1

1(Xi ≤ x)

The proportion of points (realizations) that are smaller than x

9 / 47



Non-parametric Method: Kernel Regression

Just count how many points lie on the left to the red line:

F̂ (x = 3) = 1
n ∑ 1(Xi ≤ 3)

In general, we have an estimation of F (x) as:

F (x) = P(X ≤ x) ⇒ F̂ (x) = 1
n

n

∑
i=1

1(Xi ≤ x)

The proportion of points (realizations) that are smaller than x

9 / 47



Non-parametric Method: Kernel Regression

Just count how many points lie on the left to the red line:

F̂ (x = 3) = 1
n ∑ 1(Xi ≤ 3)

In general, we have an estimation of F (x) as:

F (x) = P(X ≤ x) ⇒ F̂ (x) = 1
n

n

∑
i=1

1(Xi ≤ x)

The proportion of points (realizations) that are smaller than x

9 / 47



Non-parametric Method: Kernel Regression

Step 2: Estimating a probability density

Consider estimating a probability density function (PDF)

PDF represents a marginal increase in CDF at some point (derivative)

f (x) = dF (x)
dx

= lim
h→0

F (x + h) − F (x − h)
2h

f̂ (x) = F̂ (x + h) − F̂ (x − h)
2h

Changes of F (x) in a very small interval (with length 2h)

h is called ”bandwidth”
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Non-parametric Method: Kernel Regression

Then we can write the probability density f (x) at some value x as:

f̂ (x) = 1

2h
[1n

n

∑
i=1

1(Xi ≤ x + h) − 1
n

n

∑
i=1

1(Xi ≤ x − h)]

=
1
n

n

∑
i=1

1

2h
1(x − h ≤ Xi ≤ x + h)

How to interpret this?

We count the number of obs within a small interval around x , dividing by the
length and the total number of obs
n

∑
i=1

1
2h
1(x − h ≤ Xi ≤ x + h) is the number of obs per unit length

When n is large, we can choose very small h
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Non-parametric Method: Kernel Regression

Define k(v) = 1
2
1(∣v∣ ≤ 1). Then we have:

f̂ (x) = 1
n

n

∑
i=1

1

h
k(Xi − x

h
)

We call k(v) a uniform kernel function

This f̂ (x) is a kernel estimator of the PDF (uniform kernel)

Kernel is weight!

There can be other kinds of kernel functions, when we assign different weights to
different observations
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Non-parametric Method: Kernel Regression

A function can be used as a kernel if

k(v) is integrated to 1
k(v) is symmetric with k(v) = k(−v)

The weights sum to one; The weights are symmetric to the left and to the right

Triangular Kernel: k(v) = (1 − ∣v∣)1(∣v∣ ≤ 1)
Epanechnikov Kernel: k(v) = 3

4
(1 − v

2)1(∣v∣ ≤ 1)

Gaussian Kernel: k(v) = 1
2π
e

−v2

2

Usually, Epanechnikov Kernel and Triangular Kernel are preferred
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Usually, Epanechnikov Kernel and Triangular Kernel are preferred
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Non-parametric Method: Kernel Regression
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Non-parametric Method: Kernel Regression

For multivariate case, let v = (v1, v2,⋯, vq).
Define product kernel: K(v) = k(v1)k(v2)⋯, k(vq).
The estimator becomes:

f̂ (x) = 1

nh1h2⋯, hq
∑
i

K(Xi − x

h
)

h = (h1, h2,⋯, hq)
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Non-parametric Method: Kernel Regression
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Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF

Finally, let’s see how to estimate a CEF using kernel method

Not like linear regression, we estimate the CEF point by point

Assume that we have CEF:

Y = g(X ) + u

E[Y ∣X ] = g(X )

u has a conditional variance Var(u∣X ) = σ
2
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Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF

Based on the CDF and PDF we’ve got, we have Nadaraya-Watson Estimator
(N-W) for CEF as follows:

ĝ(x) =
n

∑
i=1

YiKh(Xi − x) where Kh(Xi − x) =
K(Xi−x

h
)

∑n
i=1 K(Xi−x

h
)

Intuition: The conditional Expectation of Y given X=x is estimated as a weighted
average of observed Yi closely around x (within the range of bandwidth h).

Weights are determined by the kernel function
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Non-parametric Method: Kernel Regression

Homework:

1. Derive NW Estimator from the kernel estimator of CDF and PDF. This can be
a little bit hard. You can refer to Notes from Carol (or Hansen’s book) for help.

2. What is NW Estimator, if we use the uniform kernel?
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Non-parametric Method: Kernel Regression

We have g(x) = E(Y ∣X ) as CEF and f (x) as density for x

Theorem (Asymptotics for N-W Estimator)

Under some regularity conditions, as n → ∞,hs → 0(s = 1, . . . , q), nh1 . . . hq → ∞

and nh1 . . . hq ∑q
s=1 h

6
s → 0, we have:

√
nh1...hq(ĝ(x) − g(x) −

q

∑
s=1

h
2
sBs(x))

d
→ N(0, σ

2(x)
f (x) (∫ k(v)2dv)q)

where Bs(x) =
∫ v

2
k(v)dv

2f (x) [2∂f (x)
∂xs

∂g(x)
∂xs

+ f (x)∂
2
g(x)
∂x2s

]
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Non-parametric Method: Kernel Regression

Asymptotic Bias=
q

∑
s=1

h
2
s
∫ v

2
k(v)dv

2f (x) [2∂f (x)
∂xs

∂g(x)
∂xs

+ f (x)∂
2
g(x)
∂x2

s
]

Asymptotic Variance= 1
nh1...hq

σ
2(x)
f (x) (∫ k(v)2dv)q

(1) hs ↑⇒ Bias ↑,Variance ↓

∴ we have trade-off in choosing kernel bandwidth.

(2) q ↑⇒ Variance ↑ exponentially
We call this ”Curse of Dimensionality”.

(3) Kernel more concentrated ⇒ Bias ↓ (∫ v
2
k(v)dv),Variance ↑ (∫ k(v)2dv))

(4) Slope Effect and Curvature Effect on bias:
∂f (x)
∂xs

∂g(x)
∂xs

,
∂
2
g(x)
∂x2

s

(5) f (x) ↑⇒ Bias ↓,Variance ↓ (more observations)
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Non-parametric Method: Local Polynomial

Another widely used kernel-based method is local polynomial

In linear regression, we use a global linear function to fit data

In local polynomial, we use piece-wise polynomial (linear) function to fit data
interval by interval
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Non-parametric Method: Local Polynomial

For some X = x , we fit g(x) by choosing samples very close to x . Then we fit a
polynomial for these observations. (Here, linear)
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Non-parametric Method: Local Polynomial

For g(x), we solve the following optimization problem at each point x :

min
b0,b1,⋯,bp

n

∑
i=1

k(Xi − x

h
)(Yi − b0 − b1(Xi − x) − b2(Xi − x)2 −⋯− bp(Xi − x)p)2

When p = 1, we call it local linear regression

When p = 2, we call it local quadratic regression
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Non-parametric Method: Series-based Methods

Both kernel and local polynomial regressions are Kernel-based methods

There are three disadvantages of this method:

Computational burden is large
Hard to include information or restriction over functional form
Requirement of large sample

Series-based methods alleviate these problems
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Non-parametric Method: Series-based Methods

As usual, we have a CEF model:

Y = g(X ) + u

g(X ) = E(Y ∣X )

We expand the CEF by Taylor Series at zero:

g(X ) =
∞

∑
k=0

g
(k)(0)
k!

X
k
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Non-parametric Method: Series-based Methods

This infinite series can be approximated by a K-order global polynomial:

g(X ) =
K

∑
k=0

βkpk(X )

p0(x) = 1, p1(x) = x , p2(x) = x
2
, ..., pK (x) = x

K

We can use OLS to estimate this polynomial

The vector of {p0, p1, p2, ..., pK} is called ”basis”

This is ”global” polynomial, in contrast to ”local” polynomial
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Non-parametric Method: Series-based Methods

Polynomial is the simplest choice of basis

In multivariate case (2 variables), it becomes:

{1, x1, x2, x1x2, x21 , x22 , x1x22 , x21x2, x21x22 ...}
Polynomial series has several problems

It is very sensitive to outliers

The biggest problem for polynomial series is Runge’s phenomenon

32 / 47



Non-parametric Method: Series-based Methods

Polynomial is the simplest choice of basis

In multivariate case (2 variables), it becomes:

{1, x1, x2, x1x2, x21 , x22 , x1x22 , x21x2, x21x22 ...}
Polynomial series has several problems

It is very sensitive to outliers

The biggest problem for polynomial series is Runge’s phenomenon

32 / 47



Non-parametric Method: Series-based Methods

Polynomial is the simplest choice of basis

In multivariate case (2 variables), it becomes:

{1, x1, x2, x1x2, x21 , x22 , x1x22 , x21x2, x21x22 ...}
Polynomial series has several problems

It is very sensitive to outliers

The biggest problem for polynomial series is Runge’s phenomenon

32 / 47



Non-parametric Method: Series-based Methods

Polynomial is the simplest choice of basis

In multivariate case (2 variables), it becomes:

{1, x1, x2, x1x2, x21 , x22 , x1x22 , x21x2, x21x22 ...}
Polynomial series has several problems

It is very sensitive to outliers

The biggest problem for polynomial series is Runge’s phenomenon

32 / 47



Non-parametric Method: Series-based Methods

Polynomial is the simplest choice of basis

In multivariate case (2 variables), it becomes:

{1, x1, x2, x1x2, x21 , x22 , x1x22 , x21x2, x21x22 ...}
Polynomial series has several problems

It is very sensitive to outliers

The biggest problem for polynomial series is Runge’s phenomenon

32 / 47



Non-parametric Method: Series-based Methods

Polynomial is the simplest choice of basis

In multivariate case (2 variables), it becomes:

{1, x1, x2, x1x2, x21 , x22 , x1x22 , x21x2, x21x22 ...}
Polynomial series has several problems

It is very sensitive to outliers

The biggest problem for polynomial series is Runge’s phenomenon

32 / 47



Non-parametric Method: Series-based Methods

Runge’s phenomenon

Red: original function; Blue: fifth-order poly; Green: ninth-order poly

Since the power polynomials are forced to vary somewhere

It may be pushed to the boundary

The boundary part is approximated very poorly
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Non-parametric Method: Series-based Methods

How to choose the optimal order?

We will discuss this problem in details in the next lecture

But in general, high order polynomial behaves very bad

Some other basis are better
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Non-parametric Method: Series-based Methods

Fourier basis, derived by Fourier expansion

Excellent for approximating periodic functions

Better than poly, but still not good at boundary (Gibbs’ phenomenon)
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Non-parametric Method: Series-based Methods

There are more basis

Such as Spline basis and Wavelet basis

They are complicated, rarely seen in Applied works

But Carol claims that Spline basis is in general a better choice

If interested, you can read her notes
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Non-parametric Method: Semi-parametric Model

Non-parametric model is so general that we do not impose any structure

Totally data driven, no prior information

Convergence rate is low, variance is high, requirement for data is high

What if we want to impose some structure, but not the full structure?

Semi-parametric model
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Non-parametric Method: Semi-parametric Model

Partially linear model

One of the most popular semi-parametric models

Y = X
′
β + g(Z) + u, E(u∣X ,Z) = 0,Var(u∣X ,Z) = σ

2

X enters in the model linearly, Z non-parametrically
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Non-parametric Method: Semi-parametric Model

Estimation of β is simple, we follow Robinson (1988)

In the first step, conditional on Z and then take the subtract:

E(Y ∣Z) = E(X ′∣Z)β + g(Z)
Y − E(Y ∣Z) = [X − E(X ∣Z)]′β + u

E(Y ∣Z) and E(X ∣Z) can be estimated using methods introduced previously

Then we have estimators for Y − E(Y ∣Z) and X − E(X ∣Z)
Then we can estimate β using OLS

Asymptotics of this estimator is complicated
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Non-parametric Method: Semi-parametric Model

In the second step, we subtract X
′
β from Y :

Y − X
′
β = g(Z) + u

g(Z) can be estimated using methods introduced previously
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Non-parametric Method: Semi-parametric Model

Question: How to estimate the variance of ĝ(Z)?
Can we use the variance from the non-parametric regression directly?

No! Because Y − X
′
β is also estimated

It contains more uncertainty from the first step

We need bootstrap
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Non-parametric Method: Bootstrap

Bootstrap is a non-parametric method for inference

Instead of deriving the closed-form equation of variance

We use simulation to estimate it

Random sampling with replacement
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Non-parametric Method: Bootstrap

Step 1: Given full sample with size n, draw R new samples of size n, with
replacement. Index each new sample by r

Step 2: Calculate the simulated variance of ĝ(x) by:

V̂ (x) = 1
R−1

∑R
r=1[ĝr(x) − ĝ(x)]2

Step 3: Use V̂ (x) to calculate confidence intervals and implement statistical tests

We call this bootstrapped variance
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Step 3: Use V̂ (x) to calculate confidence intervals and implement statistical tests

We call this bootstrapped variance

43 / 47



Non-parametric Method: Bootstrap

Step 1: Given full sample with size n, draw R new samples of size n, with
replacement. Index each new sample by r

Step 2: Calculate the simulated variance of ĝ(x) by:
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Non-parametric Method: Bootstrap

But using bootstrapped variance to construct confidence interval is a poor choice

It relies on asymptotic normality, which is not accurate in finite sample

A better chioce is ”percentile interval”

First, we stack the sample of bootstrap estimates {β̂1
, β̂

2
, ..., β̂

R}
We have an empirical distribution of β̂

r

The bootstrap 100(1 − α)% confidence interval is then: [q∗α/2, q
∗
1−α/2]

q
∗
is the quantile of this empirical distribution
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Non-parametric Method: Application

Anything related to estimation of CEF

Potential outcome framework is non-parametric
Causal inference highly depends on non-parametric techniques

Non-parametric inference in complicated models (Bootstrap)

If you focus on prediction and fit, but not the structure behind it
Predict stock price, machine learning, RDD fitting

We will show these in the following lectures
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Non-parametric Method: Application

Paper report
Dube et al. (2020) Monopsony in Online Labor Markets
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Final Conclusion

There are statistical modeling methods other than Linear regression

Non-parametric methods impose no prior structure, totally data-driven

Kernel-based methods: N-W estimator, Local polynomial
Series-based methods: Polynomial, Fourier, Spline, Wavelet

They are very useful when you want to do prediction, or when you want to
implement causal inference in a complicated context

However, they have weaknesses: Not always better to make model more flexible

Hard to incorporate restrictions
Require large sample size to have accurate estimation

We will discuss more about it next week

A semi-parametric model is between non-parametric and parametric
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