Frontier Topics in Empirical Economics: Week 2 Non-parametric Method

Zibin Huang ${ }^{1}$
${ }^{1}$ College of Business, Shanghai University of Finance and Economics

November 30, 2023

Non-parametric Method: Introduction

Non-parametric Method: Introduction

■ Common Parametric Models
Linear Model: $y=X^{\prime} \beta+e, e \sim N\left(0, \sigma^{2}\right)$;
Probit/Logit Model: $P(y \mid X)=G(X \beta)$ where G is a nonlinear function

- Explicit Parametric Structure for Distribution
- Common Estimator

OLS, MLE, Nonlinear LS, Efficient GMM etc.

- Key Properties of the Estimator

Consistency, BLUE, Asymptotic Efficiency etc.

Non-parametric Method: Introduction

■ Common Parametric Models
Linear Model: $y=X^{\prime} \beta+e, e \sim N\left(0, \sigma^{2}\right)$;
Probit/Logit Model: $P(y \mid X)=G(X \beta)$ where G is a nonlinear function

- Explicit Parametric Structure for Distribution
- Common Estimator

OLS, MLE, Nonlinear LS, Efficient GMM etc.

- Key Pronerties of the Fstimator

Consistency, BLUE, Asymptotic Efficiency etc.

Non-parametric Method: Introduction

■ Common Parametric Models
Linear Model: $y=X^{\prime} \beta+e, e \sim N\left(0, \sigma^{2}\right)$;
Probit/Logit Model: $P(y \mid X)=G(X \beta)$ where G is a nonlinear function

- Explicit Parametric Structure for Distribution
- Common Estimator

OLS, MLE, Nonlinear LS, Efficient GMM etc.

- Key Properties of the Estimator

Consistency, BLUE, Asymptotic Efficiency etc.

Non-parametric Method: Introduction

■ Common Parametric Models
Linear Model: $y=X^{\prime} \beta+e, e \sim N\left(0, \sigma^{2}\right)$;
Probit/Logit Model: $P(y \mid X)=G(X \beta)$ where G is a nonlinear function

- Explicit Parametric Structure for Distribution
- Common Estimator

OLS, MLE, Nonlinear LS, Efficient GMM etc.

- Key Properties of the Estimator

Consistency, BLUE, Asymptotic Efficiency etc.

Non-parametric Method: Introduction

Non-parametric Method: Introduction

- In linear regression, we have to assume that CEF is linear
- Why linear? Simple? Why not $y=x^{3} \cdot \operatorname{In} x+e$?
- What if linear specification is wrong?
- Everything collapses. No data can save
- It becomes only a linear approximation
- For example, if true model is Logit, but not linear regression

Non-parametric Method: Introduction

- In linear regression, we have to assume that CEF is linear
\square Why linear? Simple? Why not $y=x^{3} \cdot \ln x+e$?
- What if linear specification is wrong?
- Everything collapses. No data can save
- It becomes only a linear approximation
- For example, if true model is Logit, but not linear regression

Non-parametric Method: Introduction

- In linear regression, we have to assume that CEF is linear

■ Why linear? Simple? Why not $y=x^{3} \cdot \ln x+e$?

- What if linear specification is wrong?
- Everything collapses. No data can save
- It becomes only a linear approximation

■ For example, if true model is Logit, but not linear regression

Non-parametric Method: Introduction

- In linear regression, we have to assume that CEF is linear

■ Why linear? Simple? Why not $y=x^{3} \cdot \ln x+e$?

- What if linear specification is wrong?
- Everything collapses. No data can save.
- It becomes only a linear approximation
- For example, if true model is Logit, but not linear regression

Non-parametric Method: Introduction

- In linear regression, we have to assume that CEF is linear

■ Why linear? Simple? Why not $y=x^{3} \cdot \ln x+e$?

- What if linear specification is wrong?
- Everything collapses. No data can save.
- It becomes only a linear approximation
- For example, if true model is Logit, but not linear regression

Non-parametric Method: Introduction

- In linear regression, we have to assume that CEF is linear
- Why linear? Simple? Why not $y=x^{3} \cdot \ln x+e$?
- What if linear specification is wrong?
- Everything collapses. No data can save.
- It becomes only a linear approximation
- For example, if true model is Logit, but not linear regression

Non-parametric Method: Introduction

Non-parametric Method: Introduction

■ Potential Outcome Model is intrinsically NON-parametric!!!

- There are many other statistical modeling methods
- Non-parametric, semi-parametric
- To understand tools beyond linear regression!

Non-parametric Method: Introduction

■ Potential Outcome Model is intrinsically NON-parametric!!!

- There are many other statistical modeling methods
- Non-parametric, semi-parametric
- To understand tools beyond linear regression!

Non-parametric Method: Introduction

■ Potential Outcome Model is intrinsically NON-parametric!!!

- There are many other statistical modeling methods

■ Non-parametric, semi-parametric

- To understand tools beyond linear regression!

Non-parametric Method: Introduction

■ Potential Outcome Model is intrinsically NON-parametric!!!

- There are many other statistical modeling methods

■ Non-parametric, semi-parametric

- To understand tools beyond linear regression!

Non-parametric Method: Introduction

Non-parametric Method: Introduction

- Let's forget about the model functional form
- Give up the "parametric" model like linear regression
- Do not assume that CEF is linear
- Go back to the original question to ϵ stimate $E\left(y_{i} \mid x_{i}\right)$ without imposing any functional form assumption

Non-parametric Method: Introduction

- Let's forget about the model functional form

■ Give up the "parametric" model like linear regression

- Do not assume that CEF is linear
- Go back to the original question to estimate $E\left(y_{i} \mid x_{i}\right)$ without imposing any functional form assumption

Non-parametric Method: Introduction

- Let's forget about the model functional form
- Give up the "parametric" model like linear regression
- Do not assume that CEF is linear
- Go back to the original question to estimate $E\left(y_{i} \mid x_{i}\right)$ without imposing any functional form assumption

Non-parametric Method: Introduction

- Let's forget about the model functional form
- Give up the "parametric" model like linear regression

■ Do not assume that CEF is linear

- Go back to the original question to estimate $E\left(y_{i} \mid x_{i}\right)$ without imposing any functional form assumption

Non-parametric Method: Introduction

Non-parametric Method: Introduction

■ Notation: x_{i}, y_{i} denotes random variable; X_{i}, Y_{i} denotes realizations; x, y denotes random variables or some value of the random variables

- Realizations are given (sample), they are NOT random in our context $\int x \sum_{i}^{n} X_{i} d x=\sum_{i}^{n} X_{i} \int x d x$

Non-parametric Method: Introduction

■ Notation: x_{i}, y_{i} denotes random variable; X_{i}, Y_{i} denotes realizations; x, y denotes random variables or some value of the random variables

- Realizations are given (sample), they are NOT random in our context $\int x \sum_{i}^{n} X_{i} d x=\sum_{i}^{n} X_{i} \int x d x$

Non-parametric Method: Kernel Regression

Non-parametric Method: Kernel Regression

■ Let's consider the first non-parametric method: Kernel regression

- It is super intuitive and interesting
- Instead of assuming $E\left(y_{i} \mid x_{i}\right)=x_{i} \beta$, we consider this CEF point by point
- That is, estimate $E\left(y_{i} \mid x_{i}\right)$ for each nossible point of $x_{i}=x$

Non-parametric Method: Kernel Regression

■ Let's consider the first non-parametric method: Kernel regression

- It is super intuitive and interesting
- Instead of assuming $E\left(y_{i} \mid x_{i}\right)=x_{i} \beta$, we consider this CEF point by point
- That is, estimate $E\left(y_{i} \mid x_{i}\right)$ for each possible point of $x_{i}=x$

Non-parametric Method: Kernel Regression

■ Let's consider the first non-parametric method: Kernel regression

- It is super intuitive and interesting
- Instead of assuming $E\left(y_{i} \mid x_{i}\right)=x_{i}^{\prime} \beta$, we consider this CEF point by point
- That is, estimate $E\left(y_{i} \mid x_{i}\right)$ for each possible point of $x_{i}=x$

Non-parametric Method: Kernel Regression

■ Let's consider the first non-parametric method: Kernel regression

- It is super intuitive and interesting
- Instead of assuming $E\left(y_{i} \mid x_{i}\right)=x_{i}^{\prime} \beta$, we consider this CEF point by point
- That is, estimate $E\left(y_{i} \mid x_{i}\right)$ for each possible point of $x_{i}=x$

Non-parametric Method: Kernel Regression

Step 1: Estimating a cumulative density

Non-parametric Method: Kernel Regression

Step 1: Estimating a cumulative density

Non-parametric Method: Kernel Regression

Step 1: Estimating a cumulative density

- Consider estimating a cumulative density function (CDF)

- What is the CDF at $x=3 ? \hat{F}(x=3)=$?
- Go back to kindergarten!

Non-parametric Method: Kernel Regression

Step 1: Estimating a cumulative density

- Consider estimating a cumulative density function (CDF)

- What is the CDF at $x=3 ? \hat{F}(x=3)=$?
- Go back to kindergarten!

Non-parametric Method: Kernel Regression

Step 1: Estimating a cumulative density

- Consider estimating a cumulative density function (CDF)

- What is the CDF at $x=3 ? \hat{F}(x=3)=$?
- Go back to kindergarten!

Non-parametric Method: Kernel Regression

Non-parametric Method: Kernel Regression

- Just count how many points lie on the left to the red line:

$$
\hat{F}(x=3)=\frac{1}{n} \sum \mathbf{1}\left(X_{i} \leq 3\right)
$$

. In general, we have an estimation of $F(x)$ as:

- The proportion of points (realizations) that are smaller than x

Non-parametric Method: Kernel Regression

- Just count how many points lie on the left to the red line:

$$
\hat{F}(x=3)=\frac{1}{n} \sum \mathbf{1}\left(X_{i} \leq 3\right)
$$

- In general, we have an estimation of $F(x)$ as:

$$
F(x)=P(X \leq x) \Rightarrow \hat{F}(x)=\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \leq x\right)
$$

- The proportion of points (realizations) that are smaller than x

Non-parametric Method: Kernel Regression

■ Just count how many points lie on the left to the red line:

$$
\hat{F}(x=3)=\frac{1}{n} \sum 1\left(X_{i} \leq 3\right)
$$

■ In general, we have an estimation of $F(x)$ as:

$$
F(x)=P(X \leq x) \Rightarrow \hat{F}(x)=\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \leq x\right)
$$

- The proportion of points (realizations) that are smaller than x

Non-parametric Method: Kernel Regression

Step 2: Estimating a probability density

Non-parametric Method: Kernel Regression

Step 2: Estimating a probability density

Non-parametric Method: Kernel Regression

Step 2: Estimating a probability density

Non-parametric Method: Kernel Regression

Step 2: Estimating a probability density

- Consider estimating a probability density function (PDF)
- PDF represents a marginal increase in CDF at some point (derivative)

- Changes of $F(x)$ in a very small interval (with length $2 h$)
- h is called "bandwidth"

Non-parametric Method: Kernel Regression

Step 2: Estimating a probability density

- Consider estimating a probability density function (PDF)
- PDF represents a marginal increase in CDF at some point (derivative)

$$
\begin{aligned}
& f(x)=\frac{d F(x)}{d x}=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x-h)}{2 h} \\
& \hat{f}(x)=\frac{\hat{F}(x+h)-\hat{F}(x-h)}{2 h}
\end{aligned}
$$

- Changes of $F(x)$ in a very small interval (with length $2 h$)
- h is called "bandwidth"

Non-parametric Method: Kernel Regression

Step 2: Estimating a probability density

- Consider estimating a probability density function (PDF)
- PDF represents a marginal increase in CDF at some point (derivative)

$$
\begin{aligned}
& f(x)=\frac{d F(x)}{d x}=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x-h)}{2 h} \\
& \hat{f}(x)=\frac{\hat{F}(x+h)-\hat{F}(x-h)}{2 h}
\end{aligned}
$$

- Changes of $F(x)$ in a very small interval (with length $2 h$)
- h is called "bandwidth'

Non-parametric Method: Kernel Regression

Step 2: Estimating a probability density

- Consider estimating a probability density function (PDF)
- PDF represents a marginal increase in CDF at some point (derivative)

$$
\begin{aligned}
& f(x)=\frac{d F(x)}{d x}=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x-h)}{2 h} \\
& \hat{f}(x)=\frac{\hat{F}(x+h)-\hat{F}(x-h)}{2 h}
\end{aligned}
$$

- Changes of $F(x)$ in a very small interval (with length $2 h$)
- h is called "bandwidth"

Non-parametric Method: Kernel Regression

Non-parametric Method: Kernel Regression

- Then we can write the probability density $f(x)$ at some value x as:

$$
\begin{aligned}
\hat{f}(x) & =\frac{1}{2 h}\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(X_{i} \leq x+h\right)-\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(X_{i} \leq x-h\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{1}{2 h} \mathbf{1}\left(x-h \leq X_{i} \leq x+h\right)
\end{aligned}
$$

- How to interpret this?
- We count the number of obs within a small interval around x, dividing by the length and the total number of obs
- $\sum_{i=1}^{n} \frac{1}{2 h} 1\left(x-h \leq X_{i} \leq x+h\right)$ is the number of obs per unit length
- When n is large, we can choose very small h

Non-parametric Method: Kernel Regression

- Then we can write the probability density $f(x)$ at some value x as:

$$
\begin{aligned}
\hat{f}(x) & =\frac{1}{2 h}\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(X_{i} \leq x+h\right)-\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(X_{i} \leq x-h\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{1}{2 h} \mathbf{1}\left(x-h \leq X_{i} \leq x+h\right)
\end{aligned}
$$

- How to interpret this?
- We count the number of obs within a small interval around x, dividing by the length and the total number of obs
$\sum_{i=1}^{n} \frac{1}{2 h} 1\left(x-h \leq X_{i} \leq x+h\right)$ is the number of obs per unit length
- When n is large, we can choose very small h

Non-parametric Method: Kernel Regression

- Then we can write the probability density $f(x)$ at some value x as:

$$
\begin{aligned}
\hat{f}(x) & =\frac{1}{2 h}\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(X_{i} \leq x+h\right)-\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(X_{i} \leq x-h\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{1}{2 h} \mathbf{1}\left(x-h \leq X_{i} \leq x+h\right)
\end{aligned}
$$

- How to interpret this?
- We count the number of obs within a small interval around x, dividing by the length and the total number of obs
- $\sum_{i=1}^{n} \frac{1}{2 h} \mathbf{1}\left(x-h \leq X_{i} \leq x+h\right)$ is the number of obs per unit length
- When n is large, we can choose very small h

Non-parametric Method: Kernel Regression

- Then we can write the probability density $f(x)$ at some value x as:

$$
\begin{aligned}
\hat{f}(x) & =\frac{1}{2 h}\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(X_{i} \leq x+h\right)-\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(X_{i} \leq x-h\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{1}{2 h} \mathbf{1}\left(x-h \leq X_{i} \leq x+h\right)
\end{aligned}
$$

- How to interpret this?
- We count the number of obs within a small interval around x, dividing by the length and the total number of obs
- $\sum_{i=1}^{n} \frac{1}{2 h} \mathbf{1}\left(x-h \leq X_{i} \leq x+h\right)$ is the number of obs per unit length
- When n is large, we can choose very small h

Non-parametric Method: Kernel Regression

- Then we can write the probability density $f(x)$ at some value x as:

$$
\begin{aligned}
\hat{f}(x) & =\frac{1}{2 h}\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(X_{i} \leq x+h\right)-\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(X_{i} \leq x-h\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{1}{2 h} \mathbf{1}\left(x-h \leq X_{i} \leq x+h\right)
\end{aligned}
$$

- How to interpret this?
- We count the number of obs within a small interval around x, dividing by the length and the total number of obs
- $\sum_{i=1}^{n} \frac{1}{2 h} \mathbf{1}\left(x-h \leq X_{i} \leq x+h\right)$ is the number of obs per unit length
- When n is large, we can choose very small h

Non-parametric Method: Kernel Regression

Non-parametric Method: Kernel Regression

Non-parametric Method: Kernel Regression

Non-parametric Method: Kernel Regression

Non-parametric Method: Kernel Regression

Non-parametric Method: Kernel Regression

- Define $k(v)=\frac{1}{2} \mathbf{1}(|v| \leq 1)$. Then we have:

$$
\hat{f}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} k\left(\frac{X_{i}-x}{h}\right)
$$

- We call $k(v)$ a uniform kernel function
- This $\hat{f}(x)$ is a kernel estimator of the PDF (uniform kernel)
- Kernel is weight!
- There can be other kinds of kernel functions, when we assign different weights to different observations

Non-parametric Method: Kernel Regression

- Define $k(v)=\frac{1}{2} \mathbf{1}(|v| \leq 1)$. Then we have:

$$
\hat{f}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} k\left(\frac{X_{i}-x}{h}\right)
$$

- We call $k(v)$ a uniform kernel function
- This $\hat{f}(x)$ is a kernel estimator of the PDF (uniform kernel)
- Kernel is weight!
- There can be other kinds of kernel functions, when we assign different weights to different observations

Non-parametric Method: Kernel Regression

■ Define $k(v)=\frac{1}{2} \mathbf{1}(|v| \leq 1)$. Then we have:

$$
\hat{f}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} k\left(\frac{X_{i}-x}{h}\right)
$$

- We call $k(v)$ a uniform kernel function
- This $\hat{f}(x)$ is a kernel estimator of the PDF (uniform kernel)
- Kernel is weight!
- There can be other kinds of kernel functions, when we assign different weights to different observations

Non-parametric Method: Kernel Regression

■ Define $k(v)=\frac{1}{2} \mathbf{1}(|v| \leq 1)$. Then we have:

$$
\hat{f}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} k\left(\frac{X_{i}-x}{h}\right)
$$

- We call $k(v)$ a uniform kernel function
- This $\hat{f}(x)$ is a kernel estimator of the PDF (uniform kernel)
- Kernel is weight!
- There can be other kinds of kernel functions, when we assign different weights to different observations

Non-parametric Method: Kernel Regression

- Define $k(v)=\frac{1}{2} \mathbf{1}(|v| \leq 1)$. Then we have:

$$
\hat{f}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} k\left(\frac{X_{i}-x}{h}\right)
$$

- We call $k(v)$ a uniform kernel function
- This $\hat{f}(x)$ is a kernel estimator of the PDF (uniform kernel)
- Kernel is weight!
- There can be other kinds of kernel functions, when we assign different weights to different observations

Non-parametric Method: Kernel Regression

Non-parametric Method: Kernel Regression

- A function can be used as a kernel if
- $k(v)$ is integrated to 1
- $k(v)$ is symmetric with $k(v)=k(-v)$
- The weights sum to one; The weights are symmetric to the left and to the right
- Triangular Kernel: $k(v)=(1-|v|) 1(|v| \leq 1)$
- Epanechnikov Kernel: $k(v)=\frac{3}{4}\left(1-v^{2}\right) \mathbf{1}(|v| \leq 1)$
- Gaussian Kernel: $k(v)=\frac{1}{2 \pi} e$
- Usually, Epanechnikov Kernel and Triangular Kernel are preferred

Non-parametric Method: Kernel Regression

- A function can be used as a kernel if
- $k(v)$ is integrated to 1
$k(v)$ is symmetric with $k(v)=k(-v)$
- The weights sum to one; The weights are symmetric to the left and to the right
- Triangular Kernel: $k(v)=(1-|v|) \mathbf{1}(|v| \leq 1)$
- Epanechnikov Kernel: $k(v)=\frac{3}{4}\left(1-v^{2}\right) 1(|v| \leq 1)$
- Gaussian Kernel: $k(v)=\frac{1}{2 \pi} e$

■ Usually, Epanechnikov Kernel and Triangular Kernel are preferred

Non-parametric Method: Kernel Regression

- A function can be used as a kernel if
- $k(v)$ is integrated to 1
- $k(v)$ is symmetric with $k(v)=k(-v)$
- The weights sum to one; The weights are symmetric to the left and to the right
- Triangular Kernel: $k(v)=(1-|v|) \mathbf{1}(|v| \leq 1)$
- Epanechnikov Kernel: $k(v)=\frac{3}{4}\left(1-v^{2}\right) \mathbf{1}(|v| \leq 1)$
- Gaussian Kernel: $k(v)=\frac{1}{2 \pi} e$

■ Usually, Epanechnikov Kernel and Triangular Kernel are preferred

Non-parametric Method: Kernel Regression

- A function can be used as a kernel if
- $k(v)$ is integrated to 1
- $k(v)$ is symmetric with $k(v)=k(-v)$
- The weights sum to one; The weights are symmetric to the left and to the right
- Triangular Kernel: $k(v)=(1-|v|) 1(|v| \leq 1)$
- Epanechnikov Kernel: $k(v)=\frac{3}{4}\left(1-v^{2}\right) \mathbf{1}(|v| \leq 1)$
- Gaussian Kernel: $K^{\prime}(v)=\frac{1}{2 \pi} e$
- Usually, Epanechnikov Kernel and Triangular Kernel are preferred

Non-parametric Method: Kernel Regression

- A function can be used as a kernel if
- $k(v)$ is integrated to 1
- $k(v)$ is symmetric with $k(v)=k(-v)$
- The weights sum to one; The weights are symmetric to the left and to the right
- Triangular Kernel: $k(v)=(1-|v|) \mathbf{1}(|v| \leq 1)$
- Epanechnikov Kernel: $k(v)=\frac{3}{4}\left(1-v^{2}\right) \mathbf{1}(|v| \leq 1)$
- Gaussian Kernel: $k(v)=\frac{1}{2 \pi} e$

■ Usually, Epanechnikov Kernel and Triangular Kernel are preferred

Non-parametric Method: Kernel Regression

- A function can be used as a kernel if
- $k(v)$ is integrated to 1
- $k(v)$ is symmetric with $k(v)=k(-v)$
- The weights sum to one; The weights are symmetric to the left and to the right
- Triangular Kernel: $k(v)=(1-|v|) \mathbf{1}(|v| \leq 1)$
- Epanechnikov Kernel: $k(v)=\frac{3}{4}\left(1-v^{2}\right) \mathbf{1}(|v| \leq 1)$
- Gaussian Kernel: $k(v)=\frac{1}{2 \pi} e$

■ Usually, Epanechnikov Kernel and Triangular Kernel are preferred

Non-parametric Method: Kernel Regression

- A function can be used as a kernel if
- $k(v)$ is integrated to 1
- $k(v)$ is symmetric with $k(v)=k(-v)$
- The weights sum to one; The weights are symmetric to the left and to the right
- Triangular Kernel: $k(v)=(1-|v|) \mathbf{1}(|v| \leq 1)$
- Epanechnikov Kernel: $k(v)=\frac{3}{4}\left(1-v^{2}\right) \mathbf{1}(|v| \leq 1)$
- Gaussian Kernel: $k(v)=\frac{1}{2 \pi} e^{\frac{-v^{2}}{2}}$
- Usually, Epanechnikov Kernel and Triangular Kernel are preferred

Non-parametric Method: Kernel Regression

- A function can be used as a kernel if
- $k(v)$ is integrated to 1
- $k(v)$ is symmetric with $k(v)=k(-v)$
- The weights sum to one; The weights are symmetric to the left and to the right
- Triangular Kernel: $k(v)=(1-|v|) \mathbf{1}(|v| \leq 1)$
- Epanechnikov Kernel: $k(v)=\frac{3}{4}\left(1-v^{2}\right) \mathbf{1}(|v| \leq 1)$
- Gaussian Kernel: $k(v)=\frac{1}{2 \pi} e^{\frac{-v^{2}}{2}}$

■ Usually, Epanechnikov Kernel and Triangular Kernel are preferred

Non-parametric Method: Kernel Regression

Figure 1: Various Kernels

Non-parametric Method: Kernel Regression

Non-parametric Method: Kernel Regression

■ For multivariate case, let $v=\left(v_{1}, v_{2}, \cdots, v_{q}\right)$.

- Define product kernel: $K(v)=k\left(v_{1}\right) k\left(v_{2}\right) \cdots, k\left(v_{q}\right)$
- The estimator becomes:

$h=\left(h_{1}, h_{2}, \cdots, h_{q}\right)$

Non-parametric Method: Kernel Regression

■ For multivariate case, let $v=\left(v_{1}, v_{2}, \cdots, v_{q}\right)$.
■ Define product kernel: $K(v)=k\left(v_{1}\right) k\left(v_{2}\right) \cdots, k\left(v_{q}\right)$.

- The estimator becomes:

Non-parametric Method: Kernel Regression

■ For multivariate case, let $v=\left(v_{1}, v_{2}, \cdots, v_{q}\right)$.

- Define product kernel: $K(v)=k\left(v_{1}\right) k\left(v_{2}\right) \cdots, k\left(v_{q}\right)$.
- The estimator becomes:

$$
\hat{f}(x)=\frac{1}{n h_{1} h_{2} \cdots, h_{q}} \sum_{i} K\left(\frac{X_{i}-x}{h}\right)
$$

Non-parametric Method: Kernel Regression

■ For multivariate case, let $v=\left(v_{1}, v_{2}, \cdots, v_{q}\right)$.

- Define product kernel: $K(v)=k\left(v_{1}\right) k\left(v_{2}\right) \cdots, k\left(v_{q}\right)$.
- The estimator becomes:

$$
\hat{f}(x)=\frac{1}{n h_{1} h_{2} \cdots, h_{q}} \sum_{i} K\left(\frac{X_{i}-x}{h}\right)
$$

■ $h=\left(h_{1}, h_{2}, \cdots, h_{q}\right)$

Non-parametric Method: Kernel Regression

Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF

Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF

Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF

Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF
■ Finally, let's see how to estimate a CEF using kernel method

- Not like linear regression, we estimate the CEF point by point
- Assume that we have CEF

- u has a conditional variance $\operatorname{Var}(u \mid X)=\sigma^{2}$

Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF
■ Finally, let's see how to estimate a CEF using kernel method
■ Not like linear regression, we estimate the CEF point by point

- Assume that we have CEF

- u has a conditional variance $\operatorname{Var}(u \mid X)=\sigma^{2}$

Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF
■ Finally, let's see how to estimate a CEF using kernel method

- Not like linear regression, we estimate the CEF point by point
- Assume that we have CEF:

$$
\begin{aligned}
Y & =g(X)+u \\
E[Y \mid X] & =g(X)
\end{aligned}
$$

- u has a conditional variance $\operatorname{Var}(u \mid X)=\sigma^{2}$

Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF
■ Finally, let's see how to estimate a CEF using kernel method

- Not like linear regression, we estimate the CEF point by point
- Assume that we have CEF:

$$
\begin{aligned}
Y & =g(X)+u \\
E[Y \mid X] & =g(X)
\end{aligned}
$$

- u has a conditional variance $\operatorname{Var}(u \mid X)=\sigma^{2}$

Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF

Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF

Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF

Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF

- Based on the CDF and PDF we've got, we have Nadaraya-Watson Estimator (N-W) for CEF as follows:

$$
\hat{g}(x)=\sum_{i=1}^{n} Y_{i} K_{h}\left(X_{i}-x\right) \quad \text { where } \quad K_{h}\left(X_{i}-x\right)=\frac{K\left(\frac{X_{i}-x}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)}
$$

n Intuition: The conditional Expectation of Y given $\mathrm{X}=\mathrm{x}$ is estimated as a weighted average of observed Y_{i} closely around \times (within the range of bandwidth h)

■ Weights are determined by the kernel function

Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF

- Based on the CDF and PDF we've got, we have Nadaraya-Watson Estimator (N-W) for CEF as follows:

$$
\hat{g}(x)=\sum_{i=1}^{n} Y_{i} K_{h}\left(X_{i}-x\right) \quad \text { where } \quad K_{h}\left(X_{i}-x\right)=\frac{K\left(\frac{X_{i}-x}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)}
$$

- Intuition: The conditional Expectation of Y given $X=x$ is estimated as a weighted average of observed Y_{i} closely around \times (within the range of bandwidth h).
- Weights are determined by the kernel function

Non-parametric Method: Kernel Regression

Step 3: Estimating a CEF

- Based on the CDF and PDF we've got, we have Nadaraya-Watson Estimator (N-W) for CEF as follows:

$$
\hat{g}(x)=\sum_{i=1}^{n} Y_{i} K_{h}\left(X_{i}-x\right) \quad \text { where } \quad K_{h}\left(X_{i}-x\right)=\frac{K\left(\frac{X_{i}-x}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)}
$$

- Intuition: The conditional Expectation of Y given $X=x$ is estimated as a weighted average of observed Y_{i} closely around \times (within the range of bandwidth h).
■ Weights are determined by the kernel function

Non-parametric Method: Kernel Regression

Homework

Non-parametric Method: Kernel Regression

Homework:

Non-parametric Method: Kernel Regression

Homework:
■ 1. Derive NW Estimator from the kernel estimator of CDF and PDF. This can be a little bit hard. You can refer to Notes from Carol (or Hansen's book) for help.

- 2. What is NW Estimator, if we use the uniform kernel?

Non-parametric Method: Kernel Regression

Homework:
■ 1. Derive NW Estimator from the kernel estimator of CDF and PDF. This can be a little bit hard. You can refer to Notes from Carol (or Hansen's book) for help.
■ 2. What is NW Estimator, if we use the uniform kernel?

Non-parametric Method: Kernel Regression

- We have $g(x)=E(Y \mid X)$ as CEF and $f(x)$ as density for x

Theorem (Asymptotics for $\mathrm{N}=\mathrm{W}$ - Estimator)

Under some regularity conditions, as $n \rightarrow \infty, h_{s} \rightarrow 0(s=1, \ldots, q), n h_{1} \ldots h_{q} \rightarrow \infty$ and $n h_{1} \ldots h_{q} \sum_{s=1}^{q} h_{s}^{6} \rightarrow 0$, we have:

$$
\begin{gathered}
\sqrt{n h_{1} \ldots h_{q}}\left(\hat{g}(x)-g(x)-\sum_{s=1}^{q} h_{s}^{2} B_{s}(x)\right) \xrightarrow{d} N\left(0, \frac{\sigma^{2}(x)}{f(x)}\left(\int k(v)^{2} d v\right)^{q}\right) \\
\text { where } B_{s}(x)=\frac{\int v^{2} k(v) d v}{2 f(x)}\left[2 \frac{\partial f(x)}{\partial x_{s}} \frac{\partial g(x)}{\partial x_{s}}+f(x) \frac{\partial^{2} g(x)}{\partial x_{s}^{2}}\right]
\end{gathered}
$$

Non-parametric Method: Kernel Regression

- We have $g(x)=E(Y \mid X)$ as CEF and $f(x)$ as density for x

Theorem (Asymptotics for N-W Estimator)

Under some regularity conditions, as $n \rightarrow \infty, h_{s} \rightarrow 0(s=1, \ldots, q), n h_{1} \ldots h_{q} \rightarrow \infty$ and $n h_{1} \ldots h_{q} \sum_{s=1}^{q} h_{s}^{6} \rightarrow 0$, we have:

$$
\begin{gathered}
\sqrt{n h_{1} \ldots h_{q}}\left(\hat{g}(x)-g(x)-\sum_{s=1}^{q} h_{s}^{2} B_{s}(x)\right) \xrightarrow{d} N\left(0, \frac{\sigma^{2}(x)}{f(x)}\left(\int k(v)^{2} d v\right)^{q}\right) \\
\text { where } B_{s}(x)=\frac{\int v^{2} k(v) d v}{2 f(x)}\left[2 \frac{\partial f(x)}{\partial x_{s}} \frac{\partial g(x)}{\partial x_{s}}+f(x) \frac{\partial^{2} g(x)}{\partial x_{s}^{2}}\right]
\end{gathered}
$$

Non-parametric Method: Kernel Regression

Asymptotic Bias $=\sum_{s=1}^{q} h_{s}^{2} \frac{\int v^{2} k(v) d v}{2 f(x)}\left[2 \frac{\partial f(x)}{\partial x_{s}} \frac{\partial g(x)}{\partial x_{s}}+f(x) \frac{\partial^{2} g(x)}{\partial x_{s}^{2}}\right]$
Asymptotic Variance $=\frac{1}{n h_{1} \ldots h_{q}} \frac{\sigma^{2}(x)}{f(x)}\left(\int k(v)^{2} d v\right)^{q}$

Non-parametric Method: Kernel Regression

Asymptotic Bias $=\sum_{s=1}^{q} h_{s}^{2} \frac{\int v^{2} k(v) d v}{2 f(x)}\left[2 \frac{\partial f(x)}{\partial x_{s}} \frac{\partial g(x)}{\partial x_{s}}+f(x) \frac{\partial^{2} g(x)}{\partial x_{s}^{2}}\right]$
Asymptotic Variance $=\frac{1}{n h_{1} \ldots h_{q}} \frac{\sigma^{2}(x)}{f(x)}\left(\int k(v)^{2} d v\right)^{q}$

Non-parametric Method: Kernel Regression

Asymptotic Bias $=\sum_{s=1}^{q} h_{s}^{2} \frac{\int v^{2} k(v) d v}{2 f(x)}\left[2 \frac{\partial f(x)}{\partial x_{s}} \frac{\partial g(x)}{\partial x_{s}}+f(x) \frac{\partial^{2} g(x)}{\partial x_{s}^{2}}\right]$
Asymptotic Variance $=\frac{1}{n h_{1} \ldots h_{q}} \frac{\sigma^{2}(x)}{f(x)}\left(\int k(v)^{2} d v\right)^{q}$

- (1) $h_{s} \uparrow \Rightarrow$ Bias \uparrow, Variance \downarrow
\therefore we have trade-off in choosing kernel bandwidth.
- (2) $q \uparrow \Rightarrow$ Variance \uparrow exponentially We call this "Curse of Dimensionality"
- (3) Kernel more concentrated \Rightarrow Bias ! $\left(\int v^{2} k(v) d v\right)$, Variance $\left.\uparrow\left(\int k(v)^{2} d v\right)\right)$
- (4) Slope Effect and Curvature Effect on bias: $\frac{\partial f(x)}{\partial x_{s}} \frac{\partial g(x)}{\partial x_{s}}, \frac{\partial^{2} g(x)}{\partial x_{s}^{2}}$
- (5) $f(x) \uparrow \Rightarrow$ Bias \downarrow, Variance \downarrow (more observations)

Non-parametric Method: Kernel Regression

Asymptotic Bias $=\sum_{s=1}^{q} h_{s}^{2} \frac{\int v^{2} k(v) d v}{2 f(x)}\left[2 \frac{\partial f(x)}{\partial x_{s}} \frac{\partial g(x)}{\partial x_{s}}+f(x) \frac{\partial^{2} g(x)}{\partial x_{s}^{2}}\right]$
Asymptotic Variance $=\frac{1}{n h_{1} \ldots h_{q}} \frac{\sigma^{2}(x)}{f(x)}\left(\int k(v)^{2} d v\right)^{q}$

- (1) $h_{s} \uparrow \Rightarrow$ Bias \uparrow, Variance \downarrow
\therefore we have trade-off in choosing kernel bandwidth.
- (2) $q \uparrow \Rightarrow$ Variance \uparrow exponentially We call this "Curse of Dimensionality".
- (3) Kernel more concentrated \Rightarrow Bias $\downarrow\left(\int v^{2} k(v) d v\right)$, Variance $\left.\uparrow\left(\int k(v)^{2} d v\right)\right)$
- (4) Slope Effect and Curvature Effect on bias:

$=(5) f(x) \uparrow \Rightarrow$ Bias $!$, Variance $!$ (more observations)

Non-parametric Method: Kernel Regression

Asymptotic Bias $=\sum_{s=1}^{q} h_{s}^{2} \frac{\int v^{2} k(v) d v}{2 f(x)}\left[2 \frac{\partial f(x)}{\partial x_{s}} \frac{\partial g(x)}{\partial x_{s}}+f(x) \frac{\partial^{2} g(x)}{\partial x_{s}^{2}}\right]$
Asymptotic Variance $=\frac{1}{n h_{1} \ldots h_{q}} \frac{\sigma^{2}(x)}{f(x)}\left(\int k(v)^{2} d v\right)^{q}$

- (1) $h_{s} \uparrow \Rightarrow$ Bias \uparrow, Variance \downarrow
\therefore we have trade-off in choosing kernel bandwidth.
- (2) $q \uparrow \Rightarrow$ Variance \uparrow exponentially We call this "Curse of Dimensionality".
- (3) Kernel more concentrated \Rightarrow Bias $\downarrow\left(\int v^{2} k(v) d v\right)$, Variance $\left.\uparrow\left(\int k(v)^{2} d v\right)\right)$
- (4) Slope Effect and Curvature Effect on bias:
- (5) $f(x) \uparrow \Rightarrow$ Bias \downarrow, Variance \downarrow (more observations)

Non-parametric Method: Kernel Regression

Asymptotic Bias $=\sum_{s=1}^{q} h_{s}^{2} \frac{\int v^{2} k(v) d v}{2 f(x)}\left[2 \frac{\partial f(x)}{\partial x_{s}} \frac{\partial g(x)}{\partial x_{s}}+f(x) \frac{\partial^{2} g(x)}{\partial x_{s}^{2}}\right]$
Asymptotic Variance $=\frac{1}{n h_{1} \ldots h_{q}} \frac{\sigma^{2}(x)}{f(x)}\left(\int k(v)^{2} d v\right)^{q}$

- (1) $h_{s} \uparrow \Rightarrow$ Bias \uparrow, Variance \downarrow
\therefore we have trade-off in choosing kernel bandwidth.
- (2) $q \uparrow \Rightarrow$ Variance \uparrow exponentially We call this "Curse of Dimensionality".
- (3) Kernel more concentrated \Rightarrow Bias $\downarrow\left(\int v^{2} k(v) d v\right)$, Variance $\left.\uparrow\left(\int k(v)^{2} d v\right)\right)$
- (4) Slope Effect and Curvature Effect on bias: $\frac{\partial f(x)}{\partial x_{s}} \frac{\partial g(x)}{\partial x_{s}}, \frac{\partial^{2} g(x)}{\partial x_{s}^{2}}$
- (5) $f(x) \uparrow \Rightarrow$ Bias \downarrow, Variance \downarrow (more observations)

Non-parametric Method: Kernel Regression

Asymptotic Bias $=\sum_{s=1}^{q} h_{s}^{2} \frac{\int v^{2} k(v) d v}{2 f(x)}\left[2 \frac{\partial f(x)}{\partial x_{s}} \frac{\partial g(x)}{\partial x_{s}}+f(x) \frac{\partial^{2} g(x)}{\partial x_{s}^{2}}\right]$
Asymptotic Variance $=\frac{1}{n h_{1} \ldots h_{q}} \frac{\sigma^{2}(x)}{f(x)}\left(\int k(v)^{2} d v\right)^{q}$

- (1) $h_{s} \uparrow \Rightarrow$ Bias \uparrow, Variance \downarrow
\therefore we have trade-off in choosing kernel bandwidth.
- (2) $q \uparrow \Rightarrow$ Variance \uparrow exponentially We call this "Curse of Dimensionality".
- (3) Kernel more concentrated \Rightarrow Bias $\downarrow\left(\int v^{2} k(v) d v\right)$, Variance $\left.\uparrow\left(\int k(v)^{2} d v\right)\right)$
- (4) Slope Effect and Curvature Effect on bias: $\frac{\partial f(x)}{\partial x_{s}} \frac{\partial g(x)}{\partial x_{s}}, \frac{\partial^{2} g(x)}{\partial x_{s}^{2}}$
- (5) $f(x) \uparrow \Rightarrow$ Bias \downarrow, Variance \downarrow (more observations)

Non-parametric Method: Local Polynomial

Non-parametric Method: Local Polynomial

- Another widely used kernel-based method is local polynomial
- In linear regression, we use a global linear function to fit data
- In local polynomial, we use piece-wise polynomial (linear) function to fit data interval by interval

Non-parametric Method: Local Polynomial

- Another widely used kernel-based method is local polynomial

■ In linear regression, we use a global linear function to fit data

- In local polynomial, we use piece-wise polynomial (linear) function to fit data interval by interval

Non-parametric Method: Local Polynomial

- Another widely used kernel-based method is local polynomial

■ In linear regression, we use a global linear function to fit data

- In local polynomial, we use piece-wise polynomial (linear) function to fit data interval by interval

Non-parametric Method: Local Polynomial

For some $X=x$, we fit $g(x)$ by choosing samples very close to x. Then we fit a polynomial for these observations. (Here, linear)

Non-parametric Method: Local Polynomial

Non-parametric Method: Local Polynomial

- For $g(x)$, we solve the following optimization problem at each point x :
$\min _{b_{0}, b_{1}, \cdots, b_{p}} \sum_{i=1}^{n} k\left(\frac{X_{i}-x}{h}\right)\left(Y_{i}-b_{0}-b_{1}\left(X_{i}-x\right)-b_{2}\left(X_{i}-x\right)^{2}-\cdots-b_{p}\left(X_{i}-x\right)^{p}\right)^{2}$
- When $p=1$, we call it local linear regression
- When $p=2$, we call it local quadratic regression

Non-parametric Method: Local Polynomial

- For $g(x)$, we solve the following optimization problem at each point x :

$$
\min _{b_{0}, b_{1}, \cdots, b_{p}} \sum_{i=1}^{n} k\left(\frac{X_{i}-x}{h}\right)\left(Y_{i}-b_{0}-b_{1}\left(X_{i}-x\right)-b_{2}\left(X_{i}-x\right)^{2}-\cdots-b_{p}\left(X_{i}-x\right)^{p}\right)^{2}
$$

- When $p=1$, we call it local linear regression
- When $p=2$, we call it local quadratic regression

Non-parametric Method: Local Polynomial

- For $g(x)$, we solve the following optimization problem at each point x :

$$
\min _{b_{0}, b_{1}, \cdots, b_{p}} \sum_{i=1}^{n} k\left(\frac{X_{i}-x}{h}\right)\left(Y_{i}-b_{0}-b_{1}\left(X_{i}-x\right)-b_{2}\left(X_{i}-x\right)^{2}-\cdots-b_{p}\left(X_{i}-x\right)^{p}\right)^{2}
$$

- When $p=1$, we call it local linear regression

■ When $p=2$, we call it local quadratic regression

Non-parametric Method: Series-based Methods

Non-parametric Method: Series-based Methods

■ Both kernel and local polynomial regressions are Kernel-based methods

- There are three disadvantages of this method:
- Series-based methods alleviate these problems

Non-parametric Method: Series-based Methods

■ Both kernel and local polynomial regressions are Kernel-based methods

- There are three disadvantages of this method:
- Computational burden is large
- Hard to include information or restriction over functional form
- Requirement of large sample
- Series-based methods alleviate these problems

Non-parametric Method: Series-based Methods

■ Both kernel and local polynomial regressions are Kernel-based methods

- There are three disadvantages of this method:
- Computational burden is large
- Hard to include information or restriction over functional form
- Requirement of large sample
- Series-based methods alleviate these problems

Non-parametric Method: Series-based Methods

■ Both kernel and local polynomial regressions are Kernel-based methods

- There are three disadvantages of this method:
- Computational burden is large
- Hard to include information or restriction over functional form
- Requirement of large sample

■ Series-based methods alleviate these problems

Non-parametric Method: Series-based Methods

■ Both kernel and local polynomial regressions are Kernel-based methods

- There are three disadvantages of this method:
- Computational burden is large
- Hard to include information or restriction over functional form
- Requirement of large sample
- Series-based methods alleviate these problems

Non-parametric Method: Series-based Methods

■ Both kernel and local polynomial regressions are Kernel-based methods

- There are three disadvantages of this method:
- Computational burden is large
- Hard to include information or restriction over functional form
- Requirement of large sample

■ Series-based methods alleviate these problems

Non-parametric Method: Series-based Methods

Non-parametric Method: Series-based Methods

- As usual, we have a CEF model:

$$
\begin{aligned}
Y & =g(X)+u \\
g(X) & =E(Y \mid X)
\end{aligned}
$$

- We expand the CEF by Taylor Series at zero:

Non-parametric Method: Series-based Methods

- As usual, we have a CEF model:

$$
\begin{aligned}
Y & =g(X)+u \\
g(X) & =E(Y \mid X)
\end{aligned}
$$

- We expand the CEF by Taylor Series at zero:

$$
g(X)=\sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!} X^{k}
$$

Non-parametric Method: Series-based Methods

Non-parametric Method: Series-based Methods

- This infinite series can be approximated by a K-order global polynomial:

$$
\begin{aligned}
g(X) & =\sum_{k=0}^{K} \beta_{k} p_{k}(X) \\
p_{0}(x)=1, p_{1}(x) & =x, p_{2}(x)=x^{2}, \ldots, p_{K}(x)=x^{K}
\end{aligned}
$$

- We can use OLS to estimate this polynomial
- The vector of $\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{K}\right\}$ is called "basis"
- This is "global" polynomial, in contrast to "local" polynomial

Non-parametric Method: Series-based Methods

- This infinite series can be approximated by a K-order global polynomial:

$$
\begin{aligned}
g(X) & =\sum_{k=0}^{K} \beta_{k} p_{k}(X) \\
p_{0}(x)=1, p_{1}(x) & =x, p_{2}(x)=x^{2}, \ldots, p_{K}(x)=x^{K}
\end{aligned}
$$

- We can use OLS to estimate this polynomial
- The vector of $\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{K}\right\}$ is called "basis"
- This is "global" polynomial, in contrast to "local" polynomial

Non-parametric Method: Series-based Methods

- This infinite series can be approximated by a K-order global polynomial:

$$
\begin{aligned}
g(X) & =\sum_{k=0}^{K} \beta_{k} p_{k}(X) \\
p_{0}(x)=1, p_{1}(x) & =x, p_{2}(x)=x^{2}, \ldots, p_{K}(x)=x^{K}
\end{aligned}
$$

- We can use OLS to estimate this polynomial
- The vector of $\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{K}\right\}$ is called "basis"
- This is "global" polynomial, in contrast to "local" polynomial

Non-parametric Method: Series-based Methods

- This infinite series can be approximated by a K-order global polynomial:

$$
\begin{aligned}
g(X) & =\sum_{k=0}^{K} \beta_{k} p_{k}(X) \\
p_{0}(x)=1, p_{1}(x) & =x, p_{2}(x)=x^{2}, \ldots, p_{K}(x)=x^{K}
\end{aligned}
$$

- We can use OLS to estimate this polynomial
- The vector of $\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{K}\right\}$ is called "basis"

■ This is "global" polynomial, in contrast to "local" polynomial

Non-parametric Method: Series-based Methods

Non-parametric Method: Series-based Methods

- Polynomial is the simplest choice of basis
- In multivariate case (2 variables), it becomes

- Polynomial series has several problems
- It is very sensitive to outliers
- The biggest problem for polynomial series is Runge's phenomenon

Non-parametric Method: Series-based Methods

- Polynomial is the simplest choice of basis
- In multivariate case (2 variables), it becomes:
$\left\{1, x_{1}, x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}^{2}, x_{1}^{2} x_{2}, x_{1}^{2} x_{2}^{2} \ldots\right\}$
- Polynomial series has several problems
- It is very sensitive to outliers
- The biggest problem for polynomial series is Runge's phenomenon

Non-parametric Method: Series-based Methods

- Polynomial is the simplest choice of basis
- In multivariate case (2 variables), it becomes:
$\left\{1, x_{1}, x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}^{2}, x_{1}^{2} x_{2}, x_{1}^{2} x_{2}^{2} \ldots\right\}$
■ Polynomial series has several problems
- It is very sensitive to outliers
- The biggest problem for polynomial series is Runge's phenomenon

Non-parametric Method: Series-based Methods

- Polynomial is the simplest choice of basis
- In multivariate case (2 variables), it becomes:
$\left\{1, x_{1}, x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}^{2}, x_{1}^{2} x_{2}, x_{1}^{2} x_{2}^{2} \ldots\right\}$
■ Polynomial series has several problems
- It is very sensitive to outliers
- The biggest problem for polynomial series is Runge's phenomenon

Non-parametric Method: Series-based Methods

- Polynomial is the simplest choice of basis
- In multivariate case (2 variables), it becomes:
$\left\{1, x_{1}, x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}^{2}, x_{1}^{2} x_{2}, x_{1}^{2} x_{2}^{2} \ldots\right\}$
■ Polynomial series has several problems
- It is very sensitive to outliers
- The biggest problem for polynomial series is Runge's phenomenon

Non-parametric Method: Series-based Methods

Non-parametric Method: Series-based Methods

■ Runge's phenomenon

- Red: original function; Blue: fifth-order poly; Green: ninth-order poly

- Since the power polynomials are forced to vary somewhere
- It may be pushed to the boundary
- The boundary part is approximated very poorly

Non-parametric Method: Series-based Methods

- Runge's phenomenon

■ Red: original function; Blue: fifth-order poly; Green: ninth-order poly

- Since the power polynomials are forced to vary somewhere
- It may be pushed to the boundary

E The boundary part is approximated very poorly

Non-parametric Method: Series-based Methods

- Runge's phenomenon

■ Red: original function; Blue: fifth-order poly; Green: ninth-order poly

■ Since the power polynomials are forced to vary somewhere

- It may be pushed to the boundary
- The boundary part is approximated very poorly

Non-parametric Method: Series-based Methods

- Runge's phenomenon

■ Red: original function; Blue: fifth-order poly; Green: ninth-order poly

■ Since the power polynomials are forced to vary somewhere

- It may be pushed to the boundary
- The boundary part is approximated very poorly

Non-parametric Method: Series-based Methods

- Runge's phenomenon

■ Red: original function; Blue: fifth-order poly; Green: ninth-order poly

■ Since the power polynomials are forced to vary somewhere

- It may be pushed to the boundary
- The boundary part is approximated very poorly

Non-parametric Method: Series-based Methods

Non-parametric Method: Series-based Methods

■ How to choose the optimal order?

- We will discuss this problem in details in the next lecture

■ But in general, high order polynomial behaves very bad

- Some other basis are better

Non-parametric Method: Series-based Methods

■ How to choose the optimal order?

- We will discuss this problem in details in the next lecture
- But in general, high order polynomial behaves very bad
- Some other basis are better

Non-parametric Method: Series-based Methods

■ How to choose the optimal order?

- We will discuss this problem in details in the next lecture

■ But in general, high order polynomial behaves very bad

- Some other basis are better

Non-parametric Method: Series-based Methods

■ How to choose the optimal order?

- We will discuss this problem in details in the next lecture

■ But in general, high order polynomial behaves very bad

- Some other basis are better

Non-parametric Method: Series-based Methods

Non-parametric Method: Series-based Methods

- Fourier basis, derived by Fourier expansion

- Excellent for approximating periodic functions
- Better than poly, but still not good at boundary (Gibbs' phenomenon)

Non-parametric Method: Series-based Methods

■ Fourier basis, derived by Fourier expansion

- Excellent for approximating periodic functions
- Better than poly, but still not good at boundary (Gibbs' phenomenon)

Non-parametric Method: Series-based Methods

- Fourier basis, derived by Fourier expansion

- Excellent for approximating periodic functions
- Better than poly, but still not good at boundary (Gibbs' phenomenon)

Non-parametric Method: Series-based Methods

Non-parametric Method: Series-based Methods

- There are more basis
- Such as Spline basis and Wavelet basis
- They are complicated, rarely seen in Applied works
- But Carol claims that Spline basis is in general a better choice
- If interested, you can read her notes

Non-parametric Method: Series-based Methods

- There are more basis
- Such as Spline basis and Wavelet basis
- They are complicated, rarely seen in Applied works
- But Carol claims that Spline basis is in general a better choice
- If interested, you can read her notes

Non-parametric Method: Series-based Methods

- There are more basis
- Such as Spline basis and Wavelet basis
- They are complicated, rarely seen in Applied works
- But Carol claims that Spline basis is in general a better choice
- If interested, you can read her notes

Non-parametric Method: Series-based Methods

- There are more basis
- Such as Spline basis and Wavelet basis
- They are complicated, rarely seen in Applied works

■ But Carol claims that Spline basis is in general a better choice

- If interested, you can read her notes

Non-parametric Method: Series-based Methods

- There are more basis
- Such as Spline basis and Wavelet basis
- They are complicated, rarely seen in Applied works

■ But Carol claims that Spline basis is in general a better choice

- If interested, you can read her notes

Non-parametric Method: Semi-parametric Model

Non-parametric Method: Semi-parametric Model

- Non-parametric model is so general that we do not impose any structure
- Totally data driven, no prior information
- Convergence rate is low, variance is high, requirement for data is high
- What if we want to impose some structure, but not the full structure?
- Semi-parametric model

Non-parametric Method: Semi-parametric Model

- Non-parametric model is so general that we do not impose any structure
- Totally data driven, no prior information
- Convergence rate is low, variance is high, requirement for data is high

■ What if we want to impose some structure, but not the full structure?

- Semi-narametric model

Non-parametric Method: Semi-parametric Model

- Non-parametric model is so general that we do not impose any structure
- Totally data driven, no prior information
- Convergence rate is low, variance is high, requirement for data is high
- What if we want to impose some structure, but not the full structure?
- Semi-parametric model

Non-parametric Method: Semi-parametric Model

- Non-parametric model is so general that we do not impose any structure
- Totally data driven, no prior information
- Convergence rate is low, variance is high, requirement for data is high
- What if we want to impose some structure, but not the full structure?
- Semi-parametric model

Non-parametric Method: Semi-parametric Model

■ Non-parametric model is so general that we do not impose any structure

- Totally data driven, no prior information
- Convergence rate is low, variance is high, requirement for data is high

■ What if we want to impose some structure, but not the full structure?
■ Semi-parametric model

Non-parametric Method: Semi-parametric Model

Non-parametric Method: Semi-parametric Model

- Partially linear model
- One of the most popular semi-parametric models

$$
Y=X^{\prime} \beta+g(Z)+u, \quad E(u \mid X, Z)=0, \operatorname{Var}(u \mid X, Z)=\sigma^{2}
$$

■ X enters in the model linearly, Z non-parametrically

Non-parametric Method: Semi-parametric Model

- Partially linear model
- One of the most popular semi-parametric models

$$
Y=X^{\prime} \beta+g(Z)+u, \quad E(u \mid X, Z)=0, \operatorname{Var}(u \mid X, Z)=\sigma^{2}
$$

- X enters in the model linearly, Z non-parametrically

Non-parametric Method: Semi-parametric Model

- Partially linear model
- One of the most popular semi-parametric models

$$
Y=X^{\prime} \beta+g(Z)+u, \quad E(u \mid X, Z)=0, \operatorname{Var}(u \mid X, Z)=\sigma^{2}
$$

- X enters in the model linearly, Z non-parametrically

Non-parametric Method: Semi-parametric Model

Non-parametric Method: Semi-parametric Model

■ Estimation of β is simple, we follow Robinson (1988)

- In the first step, conditional on Z and then take the subtract

$$
\begin{aligned}
E(Y \mid Z) & =E\left(X^{\prime} \mid Z\right) \beta+g(Z) \\
Y-E(Y \mid Z) & =[X-E(X \mid Z)]^{\prime} \beta+u
\end{aligned}
$$

- $E(Y \mid Z)$ and $E(X \mid Z)$ can be estimated using methods introduced previously
- Then we have estimators for $Y-E(Y \mid Z)$ and $X-E(X \mid Z)$
- Then we can estimate β using OLS
- Asymptotics of this estimator is complicated

Non-parametric Method: Semi-parametric Model

- Estimation of β is simple, we follow Robinson (1988)

■ In the first step, conditional on Z and then take the subtract:

$$
\begin{aligned}
E(Y \mid Z) & =E\left(X^{\prime} \mid Z\right) \beta+g(Z) \\
Y-E(Y \mid Z) & =[X-E(X \mid Z)]^{\prime} \beta+u
\end{aligned}
$$

- $E(Y \mid Z)$ and $E(X \mid Z)$ can be estimated using methods introduced previously
- Then we have estimators for $Y-E(Y \mid Z)$ and $X-E(X \mid Z)$
- Then we can estimate β using OLS
- Asymptotics of this estimator is complicated

Non-parametric Method: Semi-parametric Model

■ Estimation of β is simple, we follow Robinson (1988)
■ In the first step, conditional on Z and then take the subtract:

$$
\begin{aligned}
E(Y \mid Z) & =E\left(X^{\prime} \mid Z\right) \beta+g(Z) \\
Y-E(Y \mid Z) & =[X-E(X \mid Z)]^{\prime} \beta+u
\end{aligned}
$$

■ $E(Y \mid Z)$ and $E(X \mid Z)$ can be estimated using methods introduced previously

- Then we have estimators for $Y-E(Y \mid Z)$ and $X-E(X \mid Z)$
- Then we can estimate β using OLS
- Asymptotics of this estimator is complicated

Non-parametric Method: Semi-parametric Model

■ Estimation of β is simple, we follow Robinson (1988)
■ In the first step, conditional on Z and then take the subtract:

$$
\begin{aligned}
E(Y \mid Z) & =E\left(X^{\prime} \mid Z\right) \beta+g(Z) \\
Y-E(Y \mid Z) & =[X-E(X \mid Z)]^{\prime} \beta+u
\end{aligned}
$$

- $E(Y \mid Z)$ and $E(X \mid Z)$ can be estimated using methods introduced previously

■ Then we have estimators for $Y-E(Y \mid Z)$ and $X-E(X \mid Z)$

- Then we can estimate β using OLS
- Asymptotics of this estimator is complicated

Non-parametric Method: Semi-parametric Model

■ Estimation of β is simple, we follow Robinson (1988)
■ In the first step, conditional on Z and then take the subtract:

$$
\begin{aligned}
E(Y \mid Z) & =E\left(X^{\prime} \mid Z\right) \beta+g(Z) \\
Y-E(Y \mid Z) & =[X-E(X \mid Z)]^{\prime} \beta+u
\end{aligned}
$$

- $E(Y \mid Z)$ and $E(X \mid Z)$ can be estimated using methods introduced previously
- Then we have estimators for $Y-E(Y \mid Z)$ and $X-E(X \mid Z)$
- Then we can estimate β using OLS
- Asymptotics of this estimator is complicated

Non-parametric Method: Semi-parametric Model

■ Estimation of β is simple, we follow Robinson (1988)
■ In the first step, conditional on Z and then take the subtract:

$$
\begin{aligned}
E(Y \mid Z) & =E\left(X^{\prime} \mid Z\right) \beta+g(Z) \\
Y-E(Y \mid Z) & =[X-E(X \mid Z)]^{\prime} \beta+u
\end{aligned}
$$

- $E(Y \mid Z)$ and $E(X \mid Z)$ can be estimated using methods introduced previously
- Then we have estimators for $Y-E(Y \mid Z)$ and $X-E(X \mid Z)$
- Then we can estimate β using OLS
- Asymptotics of this estimator is complicated

Non-parametric Method: Semi-parametric Model

Non-parametric Method: Semi-parametric Model

- In the second step, we subtract $X^{\prime} \beta$ from Y :

$$
Y-X^{\prime} \beta=g(Z)+u
$$

- $g(Z)$ can be estimated using methods introduced previously

Non-parametric Method: Semi-parametric Model

- In the second step, we subtract $X^{\prime} \beta$ from Y :

$$
Y-X^{\prime} \beta=g(Z)+u
$$

- $g(Z)$ can be estimated using methods introduced previously

Non-parametric Method: Semi-parametric Model

Non-parametric Method: Semi-parametric Model

- Question: How to estimate the variance of $\hat{g}(Z)$?
- Can we use the variance from the non-parametric regression directly?
- No! Because $Y-X^{\prime} \beta$ is also estimated
- It contains more uncertainty from the first step
- We need bootstrap

Non-parametric Method: Semi-parametric Model

- Question: How to estimate the variance of $\hat{g}(Z)$?
- Can we use the variance from the non-parametric regression directly?
- No! Because $Y-X^{\prime} \beta$ is also estimated

■ It contains more uncertainty from the first step

- We need bootstran

Non-parametric Method: Semi-parametric Model

- Question: How to estimate the variance of $\hat{g}(Z)$?
- Can we use the variance from the non-parametric regression directly?
- No! Because $Y-X^{\prime} \beta$ is also estimated
- It contains more uncertainty from the first step
- We need bootstrap

Non-parametric Method: Semi-parametric Model

- Question: How to estimate the variance of $\hat{g}(Z)$?
- Can we use the variance from the non-parametric regression directly?
- No! Because $Y-X^{\prime} \beta$ is also estimated
- It contains more uncertainty from the first step
- We need bootstrap

Non-parametric Method: Semi-parametric Model

- Question: How to estimate the variance of $\hat{g}(Z)$?
- Can we use the variance from the non-parametric regression directly?
- No! Because $Y-X^{\prime} \beta$ is also estimated
- It contains more uncertainty from the first step
- We need bootstrap

Non-parametric Method: Bootstrap

Non-parametric Method: Bootstrap

■ Bootstrap is a non-parametric method for inference

- Instead of deriving the closed-form equation of variance
- We use simulation to estimate it
- Random sampling with replacement

Non-parametric Method: Bootstrap

- Bootstrap is a non-parametric method for inference
- Instead of deriving the closed-form equation of variance
- We use simulation to estimate it
- Random sampling with replacement

Non-parametric Method: Bootstrap

- Bootstrap is a non-parametric method for inference
- Instead of deriving the closed-form equation of variance

■ We use simulation to estimate it

- Random sampling with replacement

Non-parametric Method: Bootstrap

- Bootstrap is a non-parametric method for inference
- Instead of deriving the closed-form equation of variance

■ We use simulation to estimate it

- Random sampling with replacement

Non-parametric Method: Bootstrap

Non-parametric Method: Bootstrap

■ Step 1: Given full sample with size n, draw R new samples of size n, with replacement. Index each new sample by r

- Step 2: Calculate the simulated variance of $\hat{g}(x)$ by $\hat{V}(x)=\frac{1}{R-1} \sum_{r=1}^{R}\left[\hat{g}_{r}(x)-\hat{g}(x)\right]^{2}$
- Step 3: Use $\hat{V}(x)$ to calculate confidence intervals and implement statistical tests
- We call this bootstrapped variance

Non-parametric Method: Bootstrap

■ Step 1: Given full sample with size n, draw R new samples of size n, with replacement. Index each new sample by r

- Step 2: Calculate the simulated variance of $\hat{g}(x)$ by: $\hat{V}(x)=\frac{1}{R-1} \sum_{r=1}^{R}\left[\hat{g}_{r}(x)-\hat{g}(x)\right]^{2}$
- Step 3: Use $\hat{V}(x)$ to calculate confidence intervals and implement statistical tests
- We call this bootstrapped variance

Non-parametric Method: Bootstrap

- Step 1: Given full sample with size n, draw R new samples of size n, with replacement. Index each new sample by r
- Step 2: Calculate the simulated variance of $\hat{g}(x)$ by: $\hat{V}(x)=\frac{1}{R-1} \sum_{r=1}^{R}\left[\hat{g}_{r}(x)-\hat{g}(x)\right]^{2}$
- Step 3: Use $\hat{V}(x)$ to calculate confidence intervals and implement statistical tests
- We call this bootstrapped variance

Non-parametric Method: Bootstrap

- Step 1: Given full sample with size n, draw R new samples of size n, with replacement. Index each new sample by r
- Step 2: Calculate the simulated variance of $\hat{g}(x)$ by: $\hat{V}(x)=\frac{1}{R-1} \sum_{r=1}^{R}\left[\hat{g}_{r}(x)-\hat{g}(x)\right]^{2}$
- Step 3: Use $\hat{V}(x)$ to calculate confidence intervals and implement statistical tests
- We call this bootstrapped variance

Non-parametric Method: Bootstrap

Non-parametric Method: Bootstrap

■ But using bootstrapped variance to construct confidence interval is a poor choice

- It relies on asymptotic normality, which is not accurate in finite sample
- A better chioce is "percentile interval'
- First, we stack the sample of bootstran estimates $\left\{\hat{\beta}^{1}, \hat{\beta}^{2}, \ldots . \hat{\beta}^{R}\right\}$
- We have an empirical distribution of $\hat{\beta}$
- The bootstrap $100(1-\alpha) \%$ confidence interval is then: $\left[q_{\alpha / 2}^{*}, q_{1-\alpha / 2}^{*}\right]$
= q^{*} is the quantile of this empirical distribution

Non-parametric Method: Bootstrap

■ But using bootstrapped variance to construct confidence interval is a poor choice
■ It relies on asymptotic normality, which is not accurate in finite sample

- A better chioce is "percentile interval'
- First, we stack the sample of bootstrap estimates $\left\{\hat{\beta}^{1}, \hat{\beta}^{2}, \ldots, \hat{\beta}^{R}\right\}$
- We have an empirical distribution of $\hat{\beta}$
- The bootstrap $100(1-\alpha) \%$ confidence interval is then: $\left[q_{\alpha / 2}^{*}, q_{1-\alpha / 2}^{*}\right]$
- q^{*} is the quantile of this empirical distribution

Non-parametric Method: Bootstrap

■ But using bootstrapped variance to construct confidence interval is a poor choice

- It relies on asymptotic normality, which is not accurate in finite sample
- A better chioce is "percentile interval"
- First, we stack the sample of bootstrap estimates $\left\{\hat{\beta}^{1}, \hat{\beta}^{2}, \ldots, \hat{\beta}^{R}\right\}$
- We have an empirical distribution of $\hat{\beta}$
- The bootstran $100(1-\alpha) \%$ confidence interval is then: $\left[q_{\alpha / 2}^{*}, q_{1-\alpha / 2}^{*}\right]$
- q^{*} is the quantile of this empirical distribution

Non-parametric Method: Bootstrap

■ But using bootstrapped variance to construct confidence interval is a poor choice

- It relies on asymptotic normality, which is not accurate in finite sample
- A better chioce is "percentile interval"
- First, we stack the sample of bootstrap estimates $\left\{\hat{\beta}^{1}, \hat{\beta}^{2}, \ldots, \hat{\beta}^{R}\right\}$
- We have an empirical distribution of $\hat{\beta}$
- The bootstrap $100(1-\alpha) \%$ confidence interval is then: $\left[q_{\alpha / 2}^{*}, q_{1-\alpha / 2}^{*}\right.$]
- q^{*} is the quantile of this empirical distribution

Non-parametric Method: Bootstrap

■ But using bootstrapped variance to construct confidence interval is a poor choice

- It relies on asymptotic normality, which is not accurate in finite sample
- A better chioce is "percentile interval"
- First, we stack the sample of bootstrap estimates $\left\{\hat{\beta}^{1}, \hat{\beta}^{2}, \ldots, \hat{\beta}^{R}\right\}$
- We have an empirical distribution of $\hat{\beta}^{r}$
- The bootstrap $100(1-\alpha) \%$ confidence interval is then: $\left[q_{\alpha / 2}^{*}, q_{1-\alpha / 2}^{*}\right]$
- q^{*} is the quantile of this empirical distribution

Non-parametric Method: Bootstrap

■ But using bootstrapped variance to construct confidence interval is a poor choice

- It relies on asymptotic normality, which is not accurate in finite sample
- A better chioce is "percentile interval"
- First, we stack the sample of bootstrap estimates $\left\{\hat{\beta}^{1}, \hat{\beta}^{2}, \ldots, \hat{\beta}^{R}\right\}$
- We have an empirical distribution of $\hat{\beta}^{r}$
- The bootstrap $100(1-\alpha) \%$ confidence interval is then: $\left[q_{\alpha / 2}^{*}, q_{1-\alpha / 2}^{*}\right]$
- q^{*} is the quantile of this empirical distribution

Non-parametric Method: Bootstrap

■ But using bootstrapped variance to construct confidence interval is a poor choice

- It relies on asymptotic normality, which is not accurate in finite sample
- A better chioce is "percentile interval"
- First, we stack the sample of bootstrap estimates $\left\{\hat{\beta}^{1}, \hat{\beta}^{2}, \ldots, \hat{\beta}^{R}\right\}$
- We have an empirical distribution of $\hat{\beta}^{r}$
- The bootstrap $100(1-\alpha) \%$ confidence interval is then: $\left[q_{\alpha / 2}^{*}, q_{1-\alpha / 2}^{*}\right]$
- q^{*} is the quantile of this empirical distribution

Non-parametric Method: Application

Non-parametric Method: Application

- Anything related to estimation of CEF
- Potential outcome tramework is non-parametric Causal inference highly depends on non-parametric techniques
- Non-parametric inference in complicated models (Bootstrap)
- If you focus on prediction and fit, but not the structure behind it Predict stock price, machine learning, RDD fitting
= We will show these in the following lectures

Non-parametric Method: Application

- Anything related to estimation of CEF
- Potential outcome framework is non-parametric Causal inference highly depends on non-parametric techniques
- Non-parametric inference in complicated models (Bootstrap)
- If you focus on prediction and fit, but not the structure behind it Predict stock price, machine learning, RDD fitting
- We will show these in the following lectures

Non-parametric Method: Application

- Anything related to estimation of CEF
- Potential outcome framework is non-parametric Causal inference highly depends on non-parametric techniques
■ Non-parametric inference in complicated models (Bootstrap)
- If you focus on prediction and fit, but not the structure behind it Predict stock price, machine learning, RDD fitting
- We will show these in the following lectures

Non-parametric Method: Application

- Anything related to estimation of CEF
- Potential outcome framework is non-parametric Causal inference highly depends on non-parametric techniques
■ Non-parametric inference in complicated models (Bootstrap)
- If you focus on prediction and fit, but not the structure behind it Predict stock price, machine learning, RDD fitting
- We will show these in the following lectures

Non-parametric Method: Application

- Anything related to estimation of CEF
- Potential outcome framework is non-parametric Causal inference highly depends on non-parametric techniques
■ Non-parametric inference in complicated models (Bootstrap)
- If you focus on prediction and fit, but not the structure behind it Predict stock price, machine learning, RDD fitting
■ We will show these in the following lectures

Non-parametric Method: Application

Non-parametric Method: Application

■ Paper report
Dube et al. (2020) Monopsony in Online Labor Markets

Final Conclusion

Final Conclusion

- There are statistical modeling methods other than Linear regression
- Non-parametric methods impose no prior structure, totally data-driven
- They are very useful when you want to do prediction, or when you want to implement causal inference in a complicated context
- However, they have weaknesses: Not always better to make model more flexible
- We will discuss more about it next week
= A semi-parametric model is between non-parametric and parametric

Final Conclusion

- There are statistical modeling methods other than Linear regression
- Non-parametric methods impose no prior structure, totally data-driven
- Kernel-based methods: N-W estimator, Local polynomial
- Series-based methods: Polynomial, Fourier, Spline, Wavelet
- They are very useful when you want to do prediction, or when you want to implement causal inference in a complicated context
■ However, they have weaknesses: Not always better to make model more flexible
- We will discuss more about it next week
- A semi-parametric model is between non-parametric and parametric

Final Conclusion

- There are statistical modeling methods other than Linear regression
- Non-parametric methods impose no prior structure, totally data-driven
- Kernel-based methods: N-W estimator, Local polynomial
- Series-based methods: Polynomial, Fourier, Spline, Wavelet
- They are very useful when you want to do prediction, or when you want to implement causal inference in a complicated context
- However, they have weaknesses: Not always better to make model more flexible
- We will discuss more about it next week
- A semi-parametric model is between non-parametric and parametric

Final Conclusion

- There are statistical modeling methods other than Linear regression
- Non-parametric methods impose no prior structure, totally data-driven
- Kernel-based methods: N-W estimator, Local polynomial
- Series-based methods: Polynomial, Fourier, Spline, Wavelet
- They are very useful when you want to do prediction, or when you want to implement causal inference in a complicated context
■ However, they have weaknesses: Not always better to make model more flexible
- We will discuss more about it next week
- A semi-parametric model is between non-parametric and parametric

Final Conclusion

- There are statistical modeling methods other than Linear regression
- Non-parametric methods impose no prior structure, totally data-driven
- Kernel-based methods: N-W estimator, Local polynomial
- Series-based methods: Polynomial, Fourier, Spline, Wavelet
- They are very useful when you want to do prediction, or when you want to implement causal inference in a complicated context
■ However, they have weaknesses: Not always better to make model more flexible
- We will discuss more about it next week
- A semi-parametric model is between non-parametric and parametric

Final Conclusion

- There are statistical modeling methods other than Linear regression
- Non-parametric methods impose no prior structure, totally data-driven

■ Kernel-based methods: N-W estimator, Local polynomial

- Series-based methods: Polynomial, Fourier, Spline, Wavelet
- They are very useful when you want to do prediction, or when you want to implement causal inference in a complicated context
■ However, they have weaknesses: Not always better to make model more flexible
- Hard to incorporate restrictions
- Require large sample size to have accurate estimation
- W/e mill discuss more about it next week
- A semi-parametric model is between non-parametric and parametric

Final Conclusion

- There are statistical modeling methods other than Linear regression
- Non-parametric methods impose no prior structure, totally data-driven

■ Kernel-based methods: N-W estimator, Local polynomial

- Series-based methods: Polynomial, Fourier, Spline, Wavelet
- They are very useful when you want to do prediction, or when you want to implement causal inference in a complicated context
■ However, they have weaknesses: Not always better to make model more flexible
- Hard to incorporate restrictions
- Require large sample size to have accurate estimation
- We will discuss more about it next week
- A semi-parametric model is between non-parametric and parametric

Final Conclusion

- There are statistical modeling methods other than Linear regression
- Non-parametric methods impose no prior structure, totally data-driven

■ Kernel-based methods: N-W estimator, Local polynomial

- Series-based methods: Polynomial, Fourier, Spline, Wavelet
- They are very useful when you want to do prediction, or when you want to implement causal inference in a complicated context
■ However, they have weaknesses: Not always better to make model more flexible
- Hard to incorporate restrictions
- Require large sample size to have accurate estimation
- We will discuss more about it next week
- A semi-parametric model is between non-parametric and parametric

Final Conclusion

- There are statistical modeling methods other than Linear regression
- Non-parametric methods impose no prior structure, totally data-driven

■ Kernel-based methods: N-W estimator, Local polynomial

- Series-based methods: Polynomial, Fourier, Spline, Wavelet
- They are very useful when you want to do prediction, or when you want to implement causal inference in a complicated context
■ However, they have weaknesses: Not always better to make model more flexible
- Hard to incorporate restrictions
- Require large sample size to have accurate estimation

■ We will discuss more about it next week

- A semi-parametric model is between non-parametric and parametric

Final Conclusion

- There are statistical modeling methods other than Linear regression
- Non-parametric methods impose no prior structure, totally data-driven

■ Kernel-based methods: N-W estimator, Local polynomial

- Series-based methods: Polynomial, Fourier, Spline, Wavelet
- They are very useful when you want to do prediction, or when you want to implement causal inference in a complicated context
■ However, they have weaknesses: Not always better to make model more flexible
- Hard to incorporate restrictions
- Require large sample size to have accurate estimation
- We will discuss more about it next week
- A semi-parametric model is between non-parametric and parametric

References

Dube, Arindrajit, Jeff Jacobs, Suresh Naidu, and Siddharth Suri. 2020. "Monopsony in Online Labor Markets." American Economic Review: Insights 2 (1):33-46.
Robinson, Peter M. 1988. "Root-N-consistent Semiparametric Regression." Econometrica :931-954.

