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Introduction

Assume that we want to examine the education quality of PKU and FDU

The average wage for PKU graduates is 200,000 RMB/year

The average wage for FDU graduates is 150,000 RMB/year

Does this mean that PKU results in higher human capital growth than FDU?

2 / 40



Introduction

Assume that we want to examine the education quality of PKU and FDU

The average wage for PKU graduates is 200,000 RMB/year

The average wage for FDU graduates is 150,000 RMB/year

Does this mean that PKU results in higher human capital growth than FDU?

2 / 40



Introduction

Assume that we want to examine the education quality of PKU and FDU

The average wage for PKU graduates is 200,000 RMB/year

The average wage for FDU graduates is 150,000 RMB/year

Does this mean that PKU results in higher human capital growth than FDU?

2 / 40



Introduction

Assume that we want to examine the education quality of PKU and FDU

The average wage for PKU graduates is 200,000 RMB/year

The average wage for FDU graduates is 150,000 RMB/year

Does this mean that PKU results in higher human capital growth than FDU?

2 / 40



Introduction

Assume that we want to examine the education quality of PKU and FDU

The average wage for PKU graduates is 200,000 RMB/year

The average wage for FDU graduates is 150,000 RMB/year

Does this mean that PKU results in higher human capital growth than FDU?

2 / 40



Introduction

No. Since better students select into PKU

Self-selection is always a problem in economic research

Is school A more efficient than school B?

Or just because they admit students with better initial quality?

How to deal with this issue?
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Introduction

Of course you can always construct a selection model structurally

But there is another design-based approach:
Regression Discontinuity Design (RDD)

The intuition for RDD is simple

Draw PKU students just above the PKU admission line and FDU students just
below it

They are students who enroll in PKU/FDU by chance, thus, similar in ability

Then compare their results
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Sharp RD

Let’s first consider a simple case: Sharp RD

In Sharp RD, treatment rule is deterministic

That is, you are definitely treated if you surpass the threshold

Conversely, you are definitely not treated

There is no uncertainty in treatment assignment
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Sharp RD

Suppose that we have treatment Di determined by some xi

Di = 1(xi ≥ x0) = {1, if xi ≥ x0

0, if xi < x0

xi is called running variable

x0 is a known threshold or cutoff

Di is a deterministic function of xi
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Sharp RD

We compare samples just above x0 and just below x0

This is a special case of matching

In conventional matching, we compare samples with identical covariates

In RD, we compare samples within a small neighborhood at treatment threshold
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Sharp RD

We can write a simple model for this RD

Yi = f0(xi)1(xi < x0) + f1(xi)1(xi ≥ x0) + ρDi + ϵi

f0(xi) is the smoothing function below the threshold

f1(xi) is the smoothing function above the threshold

They are used to fit the trend far away from the cutoff

Di is the treatment indicator, jumping at xi = x0
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Sharp RD

We can choose different smoothing function for f0 and f1

The simplest ones are linear and quadratic functions
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Sharp RD

Here are two examples from Angrist and Pischke (2009), Page 255
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Sharp RD

We can also use non-parametric and semi-parametric functions introduced in
Week 2 lecture, which are more flexible

The most recommended and commonly used one is the Local Linear/Quadratic
Regression

As we have discussed, there is a bias-variance tradeoff

If you choose complicated smoothing function, you may lose your accuracy

If you choose too simple smoothing function, you may get bias
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Sharp RD

But remember, effective sample size is usually limited in RD

You are effectively using a small neighborhood around the cutoff

So, do not use too complicated smoothing models

Specifically, Gelman and Imbens (2019) claim that you should avoid using
high-order polynomial (over third order)

It leads to noisy estimates (Runge’s phenomenon)
RDD is very sensitive to the degree of the polynomial
Coverage of confidence intervals is smaller than nominal

12 / 40



Sharp RD

But remember, effective sample size is usually limited in RD

You are effectively using a small neighborhood around the cutoff

So, do not use too complicated smoothing models

Specifically, Gelman and Imbens (2019) claim that you should avoid using
high-order polynomial (over third order)

It leads to noisy estimates (Runge’s phenomenon)
RDD is very sensitive to the degree of the polynomial
Coverage of confidence intervals is smaller than nominal

12 / 40



Sharp RD

But remember, effective sample size is usually limited in RD

You are effectively using a small neighborhood around the cutoff

So, do not use too complicated smoothing models

Specifically, Gelman and Imbens (2019) claim that you should avoid using
high-order polynomial (over third order)

It leads to noisy estimates (Runge’s phenomenon)
RDD is very sensitive to the degree of the polynomial
Coverage of confidence intervals is smaller than nominal

12 / 40



Sharp RD

But remember, effective sample size is usually limited in RD

You are effectively using a small neighborhood around the cutoff

So, do not use too complicated smoothing models

Specifically, Gelman and Imbens (2019) claim that you should avoid using
high-order polynomial (over third order)

It leads to noisy estimates (Runge’s phenomenon)
RDD is very sensitive to the degree of the polynomial
Coverage of confidence intervals is smaller than nominal

12 / 40



Sharp RD

But remember, effective sample size is usually limited in RD

You are effectively using a small neighborhood around the cutoff

So, do not use too complicated smoothing models

Specifically, Gelman and Imbens (2019) claim that you should avoid using
high-order polynomial (over third order)

It leads to noisy estimates (Runge’s phenomenon)
RDD is very sensitive to the degree of the polynomial
Coverage of confidence intervals is smaller than nominal

12 / 40



Sharp RD

But remember, effective sample size is usually limited in RD

You are effectively using a small neighborhood around the cutoff

So, do not use too complicated smoothing models

Specifically, Gelman and Imbens (2019) claim that you should avoid using
high-order polynomial (over third order)

It leads to noisy estimates (Runge’s phenomenon)
RDD is very sensitive to the degree of the polynomial
Coverage of confidence intervals is smaller than nominal

12 / 40



Sharp RD

But remember, effective sample size is usually limited in RD

You are effectively using a small neighborhood around the cutoff

So, do not use too complicated smoothing models

Specifically, Gelman and Imbens (2019) claim that you should avoid using
high-order polynomial (over third order)

It leads to noisy estimates (Runge’s phenomenon)
RDD is very sensitive to the degree of the polynomial
Coverage of confidence intervals is smaller than nominal

12 / 40



Sharp RD

But remember, effective sample size is usually limited in RD

You are effectively using a small neighborhood around the cutoff

So, do not use too complicated smoothing models

Specifically, Gelman and Imbens (2019) claim that you should avoid using
high-order polynomial (over third order)

It leads to noisy estimates (Runge’s phenomenon)
RDD is very sensitive to the degree of the polynomial
Coverage of confidence intervals is smaller than nominal

12 / 40



Sharp RD

An interesting example of Sharp RD is Lee (2008)

What is the advantage for the party incumbency on reelection?

Hard to identify since a party may have larger group of supporters for many
reasons other than incumbency
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Sharp RD

Different parties are advantaged in different regions due to ideology, history,
religion... reasons
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Sharp RD

But for elections with very close results, winners and losers are similar

Lee (2008) considers the probability of Democratic winning in regions where
Democratic candidates won by small shares
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Fuzzy RD

A more complicated case is Fuzzy RD

In Fuzzy RD, treatment assignment is no longer deterministic

There is uncertainty in being treated or not

By passing the threshold, you have larger probability to get treated
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Fuzzy RD

Discontinuity in treatment probability, but not treatment

P(Di = 1∣xi) = {g1(xi) if xi ≥ x0

g0(xi) if xi < x0
, where g1(x0) ≠ g0(x0)

Let’s assume that g1(x0) > g0(x0) WLOG

Thus, surpassing the cutoff makes treatment more likely
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Fuzzy RD

Denote Ti = 1(xi ≥ x0) as the indicator of whether passing the cutoff

Then, we can naturally write Fuzzy RD as a 2SLS

Treatment Di is endogenous variable, cutoff indicator Ti is instrument

First stage: treatment Di on cutoff indicator Ti

Second stage: outcome variable on first stage fitted value

The terms from smoothing function f should also be included in both stages

Very simple to implement RD in Stata: Packages such as rdrobust

It helps you to implement bias-corrected CI with optimal bandwidth in Calonico,
Cattaneo, and Titiunik (2014)

18 / 40



Fuzzy RD

Denote Ti = 1(xi ≥ x0) as the indicator of whether passing the cutoff

Then, we can naturally write Fuzzy RD as a 2SLS

Treatment Di is endogenous variable, cutoff indicator Ti is instrument

First stage: treatment Di on cutoff indicator Ti

Second stage: outcome variable on first stage fitted value

The terms from smoothing function f should also be included in both stages

Very simple to implement RD in Stata: Packages such as rdrobust

It helps you to implement bias-corrected CI with optimal bandwidth in Calonico,
Cattaneo, and Titiunik (2014)

18 / 40



Fuzzy RD

Denote Ti = 1(xi ≥ x0) as the indicator of whether passing the cutoff

Then, we can naturally write Fuzzy RD as a 2SLS

Treatment Di is endogenous variable, cutoff indicator Ti is instrument

First stage: treatment Di on cutoff indicator Ti

Second stage: outcome variable on first stage fitted value

The terms from smoothing function f should also be included in both stages

Very simple to implement RD in Stata: Packages such as rdrobust

It helps you to implement bias-corrected CI with optimal bandwidth in Calonico,
Cattaneo, and Titiunik (2014)

18 / 40



Fuzzy RD

Denote Ti = 1(xi ≥ x0) as the indicator of whether passing the cutoff

Then, we can naturally write Fuzzy RD as a 2SLS

Treatment Di is endogenous variable, cutoff indicator Ti is instrument

First stage: treatment Di on cutoff indicator Ti

Second stage: outcome variable on first stage fitted value

The terms from smoothing function f should also be included in both stages

Very simple to implement RD in Stata: Packages such as rdrobust

It helps you to implement bias-corrected CI with optimal bandwidth in Calonico,
Cattaneo, and Titiunik (2014)

18 / 40



Fuzzy RD

Denote Ti = 1(xi ≥ x0) as the indicator of whether passing the cutoff

Then, we can naturally write Fuzzy RD as a 2SLS

Treatment Di is endogenous variable, cutoff indicator Ti is instrument

First stage: treatment Di on cutoff indicator Ti

Second stage: outcome variable on first stage fitted value

The terms from smoothing function f should also be included in both stages

Very simple to implement RD in Stata: Packages such as rdrobust

It helps you to implement bias-corrected CI with optimal bandwidth in Calonico,
Cattaneo, and Titiunik (2014)

18 / 40



Fuzzy RD

Denote Ti = 1(xi ≥ x0) as the indicator of whether passing the cutoff

Then, we can naturally write Fuzzy RD as a 2SLS

Treatment Di is endogenous variable, cutoff indicator Ti is instrument

First stage: treatment Di on cutoff indicator Ti

Second stage: outcome variable on first stage fitted value

The terms from smoothing function f should also be included in both stages

Very simple to implement RD in Stata: Packages such as rdrobust

It helps you to implement bias-corrected CI with optimal bandwidth in Calonico,
Cattaneo, and Titiunik (2014)

18 / 40



Fuzzy RD

Denote Ti = 1(xi ≥ x0) as the indicator of whether passing the cutoff

Then, we can naturally write Fuzzy RD as a 2SLS

Treatment Di is endogenous variable, cutoff indicator Ti is instrument

First stage: treatment Di on cutoff indicator Ti

Second stage: outcome variable on first stage fitted value

The terms from smoothing function f should also be included in both stages

Very simple to implement RD in Stata: Packages such as rdrobust

It helps you to implement bias-corrected CI with optimal bandwidth in Calonico,
Cattaneo, and Titiunik (2014)

18 / 40



Fuzzy RD

Denote Ti = 1(xi ≥ x0) as the indicator of whether passing the cutoff

Then, we can naturally write Fuzzy RD as a 2SLS

Treatment Di is endogenous variable, cutoff indicator Ti is instrument

First stage: treatment Di on cutoff indicator Ti

Second stage: outcome variable on first stage fitted value

The terms from smoothing function f should also be included in both stages

Very simple to implement RD in Stata: Packages such as rdrobust

It helps you to implement bias-corrected CI with optimal bandwidth in Calonico,
Cattaneo, and Titiunik (2014)

18 / 40



Fuzzy RD

Denote Ti = 1(xi ≥ x0) as the indicator of whether passing the cutoff

Then, we can naturally write Fuzzy RD as a 2SLS

Treatment Di is endogenous variable, cutoff indicator Ti is instrument

First stage: treatment Di on cutoff indicator Ti

Second stage: outcome variable on first stage fitted value

The terms from smoothing function f should also be included in both stages

Very simple to implement RD in Stata: Packages such as rdrobust

It helps you to implement bias-corrected CI with optimal bandwidth in Calonico,
Cattaneo, and Titiunik (2014)

18 / 40



Non-parametric Identification of RD

We have already introduced how to implement RD method

And intuitively discussed its identification source

But what kind of causal effect we are identifying?

What exactly are its identification assumptions?
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Non-parametric Identification of RD

Let’s go to a classic study in RDD, Hahn, Todd, and Van der Klaauw (2001)

Do not say that you understand RDD if you never read this paper
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Non-parametric Identification of RD

Denote y1i , y0i as the potential outcomes, xi as the treatment

We have an outcome yi = αi + xi ⋅ βi
Thus, αi ≡ y0i , βi ≡ y1i − y0i
Assume that we have a running variable zi

In Sharp design, we have xi = f (zi) discontinuous at z0
In Fuzzy design, we have P(xi = 1∣zi) = f (zi) discontinuous at z0

Assumption (RD) in Hahn, Todd, and Van der Klaauw (2001)
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Non-parametric Identification of RD

First, consider the simple case of constant treatment effects

βi = β across individuals

Assume that other confounders are continuous at the cutoff

Assumption (A1) in Hahn, Todd, and Van der Klaauw (2001)

E[αi ∣zi = z] is continuous in z at z0
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Non-parametric Identification of RD

We can prove that β is non-parametrically identified

Theorem 1 in Hahn, Todd, and Van der Klaauw (2001)

Suppose that βi is fixed at β. Further suppose that Assumptions (RD) and (A1) hold.

We then have: β =
y
+−y−

x+−x−
, where y

+
≡ limz→z+0

E[yi ∣zi = z] and

y
−
≡ limz→z−0

E[yi ∣zi = z]

Using an IV-style method, we can pin down the treatment effect
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Non-parametric Identification of RD

Next, we go to more complicated heterogeneous treatment effect case

We need one more assumption, not only α is continuous at z0, but also β

Assumption (A2) in Hahn, Todd, and Van der Klaauw (2001)

E[βi ∣zi = z] is continuous at z = z0

Then we have the following result

Theorem 2 in Hahn, Todd, and Van der Klaauw (2001)

Suppose that xi is independent of βi conditional on zi near z0. Further suppose that

Assumptions (RD), (A1), and (A2) hold. We then have: β =
y
+−y−

x+−x−
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Non-parametric Identification of RD

Theorem 2 tells us that under heterogeneous TE, if

There is no sorting over returns at the cutoff
Other confounding factors are continuous at the cutoff

Then we can identify the ATT for individuals around the cutoff

This is the case for Sharp RD, when treatment assignment is deterministic (All
compliers), thus, no sorting

However, no sorting is a strong assumption under Fuzzy RD

Individuals of course choose treatment based on how much they can benefit

Just like Roy model tells us
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Non-parametric Identification of RD

Let’s see what will happen if we drop it

We invoke a set of assumptions similar to Imbens and Angrist (1994) on LATE

Assumption (A3) in Hahn, Todd, and Van der Klaauw (2001)

(i) (βi , xi(z)) is jointly independent of zi near z0. (ii) There exists ϵ > 0 such that
xi(z0 + e) ≥ xi(z0 − e) for all 0 < e < ϵ

(i) says that given choice xi , treatment effect βi is independent of zi near z0

Running variable z can only affect y through changing treatment x

Test scores only affect wage through changing whether you can be admitted to
PKU (exclusion restriction)

(ii) says that in a small neighborhood around the cutoff, we have monotonicity
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Non-parametric Identification of RD

Under exclusion restriction and monotonicity, we have:

Theorem 3 in Hahn, Todd, and Van der Klaauw (2001)

Suppose that Assumptions (RD), (A1), and (A3) hold. We then have:

lime→0+ E[βi ∣xi(z0 + e) − xi(z0 − e) = 1] = y
+−y−

x+−x−

Theorem 3 says that we can identify LATE under a set of assumptions similar to
Imbens and Angrist (1994)

This LATE has two parts to be ”Local”

Individuals who change their choice around cutoff (Complier)
Individuals around the cutoff
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Non-parametric Identification of RD

From this analysis of identification of RD

We can derive what conditions we have to validate

First, we need to check the existence of the discontinuity

Draw the figure with x-axis as running variable, y-axis as treatment

Draw the figure with x-axis as running variable, y-axis as outcome

Visually detect the discontinuity
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Non-parametric Identification of RD

Second, implement balance test for samples just below and just above the cutoff

Other variables or confounders should be similar or continuous around the cutoff

Additionally, check the density of samples around the cutoff

Make sure there is no bunching to either one side of it

Good students should not control their scores to just a little above the threshold

Long live sixty! Sixty-one is useless! One hundred is also useless!
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Application of RD: He, Wang, and Zhang (2020)

The paper report this week is He, Wang, and Zhang (2020)

It estimates the effect of environmental regulation on firm productivity in China

The basic idea is very interesting

Monitoring stations only capture emissions from upstream regions

Thus, local gov officials enforce tighter environmental standards on firms just
upstream rather than just downstream

It gives a natural RDD setting
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Extension of RDD: RKD

An interesting extension of RDD is RKD

RKD: Regression Kink Design

Rather than employing the discontinuity on treatment, we employ the kink on
treatment

The jump is no longer on the level, but the slope

Or we say, the treatment probability derivative has a discontinuity (second order)
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Extension of RDD: RKD

Consider an example from Card et al. (2015) and Card et al. (2017)

In many countries, workers can get compensation when they are unemployed

This is called unemployment benefit (UI)

The amount of UI depends on the wage of your last job

If your last wage is too low, there is a minimum benefit level

There is also a maximum value for UI (Bill Gates will not get billions once he is
unemployed)
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Extension of RDD: RKD

Here is a figure for UI distribution in Austria

Two kinks are noticeable: Minimum and Maximum
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Extension of RDD: RKD

A controversial issue is that too generous UI can incentive workers not to search
for new jobs

It is important to investigate the relation between UI benefit B and
unemployment duration Y

Denote V as the wage of the last job, the running variable; U as an error term

We have Y ≡ y(B,V ,U) as the outcome function

In a sharp kink design, B is a deterministic function of V : B = b(V ) with a slope
change at V = 0

Here we normalize the kink to V = 0 to simplify the notation
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Extension of RDD: RKD

Assumption 1: (i) U is bounded; (ii) y is continuous and partially differentiable
(Regularity)

Assumption 2: Twice derivative y2(b, v , u) is continuous w.r.t. V around the kink
(Exclusion)

Assumption 3: Treatment assignment rule b(v) is known, continuous, and has a
kink at v = 0 (Kink existence)

Assumption 4: Conditional density fV ∣U(v) and its partial derivative w.r.t v are
continuous around the kink (Gives us no kink for confounders)
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Extension of RDD: RKD

Then we have the non-parametric identification of RKD

Proposition 1 in Card et al. (2015)

In a valid Sharp RKD, that is, when Assumptions 1-4 hold:
(a) P(U ≤ u∣V = v) is continuously differentiable in v at v = 0 ∀u ∈ IU , where IU is
the neighborhood of the kink.

(b) E[y1(b0, 0,U)∣V = 0] =
limv→0+

dE[Y ∣V=v]
dv

∣
V=V0

−limv→0−
dE[Y ∣V=v]

dv
∣
V=V0

limv→0+
db(v)
dv

∣
V=V0

−limv→0−
db(v)
dv

∣
V=V0

Sharp RKD is dividing slope change of E[Y ∣V ] by slope change of b(v)
On the contrary, RDD divides level by level

Sharp RKD identifies the ATT for individuals with B = b0,V = 0
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Extension of RDD: RKD

The intuition here is as follows

A change in the slope of treatment probability results in a change in the slope of
average outcome

If there is no change of slope for unobserved confounders

We can attribute all changes in outcomes to changes of treatment
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Extension of RDD: RKD

What about Fuzzy case?

The result is very complicated, but with no surprising intuition

In a Fuzzy RKD, we identify a LATE for individuals who have UI slope changes at
the kink

The larger you change, the larger weight you have

Of course, we have to invoke some monotonicity assumption
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Conclusion

When you have a discontinuity in treatment, you can use RDD

Sharp RDD is matching

Using samples around the cutoff
It identifies ATT for individuals around the cutoff

Fuzzy RDD is IV

Using cutoff indicator as instrument
It identifies LATE for compliers around the cutoff

When you have a discontinuity in treatment slope, you can use RKD

It also identifies ATT and LATE in Sharp and Fuzzy settings, respectively
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Conclusion

In practice, remember the following tips

Do not use high-order polynomials as smoothing functions

A common way is to use local linear regression

Using packages in Stata to give you optimal bandwidth and bias-corrected
inference

Implement balance test both visually and statistically to validate your assumptions
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