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Introduction

Causal inference is the central topic of applied economics

We almost solely focus on potential outcome framework in Economics

This framework is proposed by Donald Rubin (Imbens and Rubin, 2015; Rubin,
1974) and sometimes called ”Rubin Causal Model”
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Introduction

Is this the only statistical framework dealing with causal inference issue?
Of course NOT.

Graphical Model is another important method (Pearl, 2009)

This is a method highly related to computer science and AI

Nobel Prize: AI is the future of all sciences!! LOL
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Introduction

Today we are going to learn this new framework

How it can be applied to economic research is still a very very open question

Imbens wrote an interesting and critical paper on it
Imbens (2020) Potential Outcome and Directed Acyclic Graph Approaches to
Causality: Relevance for Empirical Practice in Economics
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Introduction

Judea Pearl is an Israeli-American computer scientist and philosopher, best known
for championing the probabilistic approach to artificial intelligence and the
development of Bayesian networks. In 2011, he was awarded with the Turing
Award, ”for fundamental contributions to artificial intelligence through the
development of a calculus for probabilistic and causal reasoning”.
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Introduction

Plan for today

Introduce the graphical model and the DAG framework

Discuss the possible usage of DAG for economists: Pros and Cons

Compare DAG and PO framework: why PO is still more popular

An example of using DAG: Pinto (2015)

Conclusion: How can DAG help applied economics research (open question)
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DAG Approach: Introduction

Pearl (2009): Causality, Cambridge University Press 2009

Neal (2020): Introduction to Causal Inference Online Course
https://www.bradyneal.com/causal-inference-course#course-textbook

Pearl and Mackenzie (2018): The Book of Why, Allen Lane 2018
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DAG Approach: Graph

Graph is a collection of nodes and edges that connect the nodes.
Two nodes are called adjacent if they are connected by an edge.
A directed graph’s edges go out of a parent into a child.
A path is any sequence of adjacent nodes, regardless of the direction of the edges.
A directed path is a path that consists of directed edges that are all directed in
the same direction.

(a) Undirected Graph (b) Directed Graph
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DAG Approach: Graph

If there is a directed path that starts at node X and ends at node Y, then X is an
ancestor of Y, and Y is a descendant of X.

If there is no cycle in a directed graph, the graph is called a directed acyclic graph
(DAG)

(k) No Cycle (l) Cycle
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DAG Approach: Bayesian Networks

How to connect graphs to causal inference?

The first step is to connect graphs to statistical relations: Bayesian Networks

A Bayesian network is a probabilistic graphical model that represents a set of
variables and their conditional dependencies via a DAG
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DAG Approach: Bayesian Networks

For any PDF, a Bayesian factorization can be expressed as:

P(x1, x2, ..., xn) = P(x1)∏
i≠1

P(xi ∣xi−1, ..., x1) (1)

Example: P(x1, x2, x3) = P(x1)P(x2∣x1)P(x3∣x2, x1)
This is like a chain

We can simplify the model if we assume some dependency structure, e.g.
P(x3∣x2, x1) = P(x3∣x2) if x1 ⊥ x3∣x2
When we make more assumptions, we simplify it more
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DAG Approach: Bayesian Networks

Bayesian factorization can be applied to any joint distribution of (x1, x2, ..., xn)
With the set of the dependency assumptions, we are giving the joint distribution a
structure

We can use a graph to represent this assumed dependency structure, system of
probabilistic relations

A one-to-one mapping between graph G and probabilistic relations P
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DAG Approach: Bayesian Networks

Assumption (Minimality Assumption)

1. Given its parents in the DAG, a node X is independent of all its non-descendants (Local
Markov Assumption);
2. Adjacent nodes in the DAG are dependent (Minimal independence).

Definition (Bayesian Network Factorization)

Given a probability distribution P and a DAG G satistying ”Minimality Assumption”, P
factorizes according to G by

P(x1, x2, ..., xn) = P(x1)∏
i

P(xi ∣pai)

where pai is the parents set of i .
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DAG Approach: Bayesian Networks

Local Markov means that the dependence structure is ”local” and ”Markov”

Minimal independence means that there is no more independence outside the
network showed in the graph

Bayesian Factorization means that: If P has a causal structure as shown in G

xi only depends on parents pai in the graph
We can do Bayesian network factorization for P w.r.t. G

We call ”G represents P”, ”G and P are compatible”, ”P is Markov relative to G”
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DAG Approach: Bayesian Networks

Let’s see a simple example

Assume that we have four variables x1, x2, x3, x4

A full decomposition is:

P(x1, x2, x3, x4) = P(x1)P(x2∣x1)P(x3∣x2, x1)P(x4∣x3, x2, x1) (2)

What if we have the following DAG showing the relation among x1, x2, x3, x4?
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DAG Approach: Bayesian Networks

We can then have a Bayesian Network Factorization as:

P(x1, x2, x3, x4) = P(x1)P(x2)P(x3∣x1)P(x4∣x3) (3)

Edges in the graph mean statistical dependencies
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DAG Approach: Causal Graphs

Up until now, we consider only statistical dependencies

What about those arrows?

Assumption (Causal Edges Assumption)

In a directed graph, every parent is a direct cause of all its children.

By adding causal edge assumption, we have this DAG to represent not only
statistical dependencies, but causal relations

Directed paths in DAGs correspond to causation

A more mathematically rigorous definition is imposed on SEM
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DAG Approach: Graphical Building Blocks

Now we introduce some building blocks of the causal graph

Flow of association is symmetric: x1 and x3 are associated in both chain and fork
(but not immorality)

Flow of causation is asymmetric: x2 causes x3 but not vice versa
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DAG Approach: Graphical Building Blocks

By conditioning on variable x2, we can block the flow of association in chains and
forks

We can show that with this graph:

P(x1, x3∣x2) = P(x1∣x2)P(x3∣x2) (4)
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DAG Approach: Graphical Building Blocks

Things can be different in immorality

We call X2, the child of a immorality, as a collider

Applying Bayesian factorization:

P(x1, x3) = ∫
x2

P(x1)P(x3)P(x2∣x1, x3)

= P(x1)P(x3)∫
x2

P(x2∣x1, x3) = P(x1)P(x3) (5)

x1 and x3 are independent, without the need to conditional on x2
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DAG Approach: Graphical Building Blocks

What’s more, by conditional on x2, you are creating dependencies!

Controlling for post-determined variables!

A simple example: x1 is good-looking, x2 is kindness, x3 is marriage availability

Conditional on x3 = 1, you will see negative relation between x1 and x2!

Well-known as bad control problem in econometrics
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DAG Approach: Graphical Building Blocks

Homework: Prove that by conditional on x2, we have x1 and x3 to be dependent.
That is, P(x1, x3∣x2) ≠ P(x1∣x2) ⋅ P(x3∣x2)
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DAG Approach: Blocked Path and d-separation

Definition (Blocked Path)

A path between X and Y is blocked by a conditioning set Z if either of the following is true:
1. Along the path, there is a chain → W → or a fork ← W → where W ∈ Z;
2. There is a collider W that both itself and its descendants are not conditioned on in Z;

Association flows along unblocked paths, does NOT flow along blocked paths!

Definition (d-separation)

Two sets of nodes X and Y are d-separated by a set of nodes Z if all of the paths between
nodes in X and nodes in Y are blocked by Z

d-separation means conditional independence!!

All association flows between X and Y are blocked by Z
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DAG Approach: Blocked Path and d-separation

Theorem 1.2.4, 1.2.5 in Pearl (2009), Theorem 3.1 in Neal (2020)

Theorem (d-separation and statistical independence)

If X and Y are d-separated in a DAG G conditional on Z, then X and Y are independent
conditioned on Z in every distribution compatible with G:

X ⊥G Y ∣Z ⇒ X ⊥P Y ∣Z ,∀P compatible with G

Conversely, if X and Y are independent conditional on Z in all P compatible with G, then X and
Y are d-separated in G conditional on Z:

∀P compatible with G,X ⊥P Y ∣Z ⇒ X ⊥G Y ∣Z

This theorem is a bridge, telling you how to express statistical independence in a graph!!
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DAG Approach: Blocked Path and d-separation

Associations flow along unblocked paths

Causations flow along directed unblocked paths

Identification: how to net causation out of associations?

By ensuring that there is no non-causal association between X and Y!

If X and Y are d-separated in the augmented graph where we remove outgoing
edges from X

In another word, all non-causal paths are blocked
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DAG Approach: do-operator

We define operator ”do(T = t)” as an intervention to give the whole population
treatment t

We denote it in terms of potential outcomes as:

P(y∣do(t)) = P(Y = y∣do(T = t)) = P(Y (t) = y) (6)

P(y∣do(t)) means the distribution of the potential outcome Y (t)
Identification of a causal model: If we can reduce an expression Q with do to one
without do, then Q is identifiable.

Just like we can reduce an expression with potential outcomes to an expression
without them in PO framework
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DAG Approach: Backdoor Adjustment

Non-directed unblocked paths from T to Y are ”backdoor paths”

If some variable set W blocks all backdoor paths from T to Y and does not
contain any descendants of T, we say W satisfies ”the backdoor criterion”
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DAG Approach: Backdoor Adjustment

Backdoor Adjustment Theorem

Theorem (Backdoor Adjustment)

If W satisfies the backdoor criterion, we can identify the causal effect of T on Y by:

P(y∣do(t)) = ∫
w
P(y∣t,w)P(w)

W is what we usually call ”control variables”

The backdoor criterion is similar to the ”selection on observables” assumption
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DAG Approach: Frontdoor Adjustment

Another very interesting identification method in DAG is frontdoor adjustment

This is totally new to economists

Assume that we have the following DAG

29 / 57



DAG Approach: Frontdoor Adjustment

Another very interesting identification method in DAG is frontdoor adjustment

This is totally new to economists

Assume that we have the following DAG

29 / 57



DAG Approach: Frontdoor Adjustment

Another very interesting identification method in DAG is frontdoor adjustment

This is totally new to economists

Assume that we have the following DAG

29 / 57



DAG Approach: Frontdoor Adjustment

Another very interesting identification method in DAG is frontdoor adjustment

This is totally new to economists

Assume that we have the following DAG

29 / 57



DAG Approach: Frontdoor Adjustment

If W is unobserved, we can identify effect of T on Y in three steps
1. Identify effect of T on M
2. Identify effect of M on Y (control for T)
3. Combine step 1 and 2
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DAG Approach: Frontdoor Adjustment

Definition (Frontdoor Criterion)

A set of variables M satisfies the frontdoor criterion relative to T and Y if:
1. M completely mediates the causal effect of T on Y;
2. There is no unblocked backdoor path from T to M;
3. All backdoor paths from M to Y are blocked by T.

Theorem (Frontdoor Adjustment)

If T, M, Y satisfy the frontdoor criterion, then we have

P(y∣do(t)) = ∑
m

P(m∣t)∑
t ′

P(y∣m, t
′)P(t ′)

We can identify the original treatment effect if we have a complete mediator
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DAG Approach: Non-parametric Identification

But backdoor and frontdoor criteria are just sufficient conditions for causal
identification

They are not necessary

Can we find a set of necessary conditions?

If there is such a set, we can decide whether a causal effect is identifiable or not in
any causal system

Here it comes: do-calculus

32 / 57



DAG Approach: Non-parametric Identification

But backdoor and frontdoor criteria are just sufficient conditions for causal
identification

They are not necessary

Can we find a set of necessary conditions?

If there is such a set, we can decide whether a causal effect is identifiable or not in
any causal system

Here it comes: do-calculus

32 / 57



DAG Approach: Non-parametric Identification

But backdoor and frontdoor criteria are just sufficient conditions for causal
identification

They are not necessary

Can we find a set of necessary conditions?

If there is such a set, we can decide whether a causal effect is identifiable or not in
any causal system

Here it comes: do-calculus

32 / 57



DAG Approach: Non-parametric Identification

But backdoor and frontdoor criteria are just sufficient conditions for causal
identification

They are not necessary

Can we find a set of necessary conditions?

If there is such a set, we can decide whether a causal effect is identifiable or not in
any causal system

Here it comes: do-calculus

32 / 57



DAG Approach: Non-parametric Identification

But backdoor and frontdoor criteria are just sufficient conditions for causal
identification

They are not necessary

Can we find a set of necessary conditions?

If there is such a set, we can decide whether a causal effect is identifiable or not in
any causal system

Here it comes: do-calculus

32 / 57



DAG Approach: Non-parametric Identification

But backdoor and frontdoor criteria are just sufficient conditions for causal
identification

They are not necessary

Can we find a set of necessary conditions?

If there is such a set, we can decide whether a causal effect is identifiable or not in
any causal system

Here it comes: do-calculus

32 / 57



DAG Approach: Non-parametric Identification

Denote GX as take graph G and then remove all incoming edges to X

Denote GX as take graph G and then remove all outgoing edges to X

Theorem (Rules of do-calculus)

(1) Rule 1: P(y∣do(t), z ,w) = P(y∣do(t),w), if Y ⊥GT
Z ∣T ,W

(2) Rule 2: P(y∣do(t), do(z),w) = P(y∣do(t), z ,w), if Y ⊥GTZ
Z ∣T ,W

(3) Rule 3: P(y∣do(t), do(z),w) = P(y∣do(t),w), if Y ⊥GTZ(W )
Z ∣T ,W
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DAG Approach: Non-parametric Identification

Theorem (Identification of Causal Effect)

A causal effect Q is identifiable in a model characterized by a graph G if there exists a
finite sequence of transformations, each conforming to one of the inference rules 1, 2,
or 3, that reduce Q into a standard (”do”-free) probability expression involving
observed quantities.

do-calculus is complete. You can use these three rules to identify all identifiable
causal estimands.

Caution: we consider only non-parametric identification here!
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DAG Approach: Non-parametric Identification

What are the intuitions of the three rules?

Rule 1 (deletion of var): P(y∣do(t), z ,w) = P(y∣do(t),w), if Y ⊥GT
Z ∣T ,W

Erase do(t), this is just an extension of d-separation under the Markov assumption
P(y∣z ,w) = P(y∣w), if Y ⊥G Z ∣W

Rule 2 (do-var exchange): P(y∣do(t), do(z),w) = P(y∣do(t), z ,w), if Y ⊥GTZ
Z ∣W

Erase do(t), this is just an extension of the backdoor adjustment
P(y∣do(z),w) = P(y∣z ,w), if Y ⊥GZ

Z ∣T ,W
W can block all non-causal links between Z and Y

Rule 3 (deletion of action): P(y∣do(t), do(z),w) = P(y∣do(t),w), if Y ⊥GTZ(W )
Z ∣T ,W
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DAG Approach: An Example

An example: College (D) return on wages (Y)

Which variable do we need to control for?
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DAG in Economics

In general, Imbens believes that ”These frameworks are complementary, with
different strengths that make them particularly appropriate for different
questions.”

Two major advantages of DAG framework:

DAG illustrates causal assumptions in an explicit and clear way
Especially if you are interested in mediation/surrogates.
Machinery developed in DAG (do-calculus) allows researchers to investigate causal
queries in a systematic way
Especially for complex models with large number of variables.
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DAG in Economics

What are pros and cons of using DAG in Economics?
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DAG in Economics: Clarity

Pro 1: Clarity

Unconfoundedness
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DAG in Economics: Clarity

IV strategy
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DAG in Economics: Complicated Model

Pro 2: Tool to analyze complicated causal model

An example of a complicated model
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DAG in Economics: Complicated Model

Structural Equation Modeling

Given a DAG, we write down a linear equation system
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DAG in Economics: Complicated Model

Imbens’ concern: do we really need such huge model and SEM in econ?

He argues that economists don’t like SEM without economic meaning

Structural modeling in econ uses economic theory more deeply than DAGs can
capture

DAGs cannot easily show shape restrictions (monotonicity of variables etc)
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DAG in Economics: Complicated Model

Structural in econ is different from Structural in some other fields

We want to regularize data by theory, and care about primitive parameters

DAGs can deal with SEM, but not structural models in econ

Personally, I agree with this: how can you illustrate a dynamic discrete choice
model using DAGs?
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DAG in Economics: Frontdoor Criterion

Pro 3: Frontdoor Criterion

Frontdoor adjustment can be an interesting identification strategy for economists

It relies on the existence of a complete mediator

How to apply this method to economics is still an open question

Too hard to find such a DAG in real life (a complete mediator)
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DAG in Economics: Frontdoor Criterion

Complete mediator is rare to find

What if T affects Y in other ways?
What if some unobserved U affects both Y and M?
What if W can also affect M?
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DAG in Economics: Mediation

Pro 4: Systematic analysis of mediation effect

DAG may shed lights on identifying mediation effect

The question remains: we need to impose strong causal structure assumption

Still much better than ”mediation effect test” (I really hate it...)

Mediation effect test forces you to admit a very simple causal structure just to
implement an on-the-shelf test

This is a typical behavior of regression monkey

DAG allows you to ”have a causal structure” based on your economic context
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DAG in Economics

Con 1: DAG needs ex ante causal structure

DAG develops machinery for identification given two inputs

Knowledge of joint distribution of all observed variables
Structure of the causal model

Little is said about why we have this model structure (before model) and inference
(after model)

These can be unfriendly to economists
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DAG in Economics: DAG and Traditional Methods in Economics

Con 2: DAG does not fit into IV very well

DAG is unable to clearly express some parts of the IV method

Shape restrictions like monotonicity assumption is not naturally captured in DAG
LATE theorem is not easily derived in a DAG approach

PO can naturally express IV

Or in general, the inability to fit IV shows two weaknesses of DAG

DAG is not convenient in expressing economic-related structural assumptions
PO can deal with heterogeneity issue (LATE) better

DAG does not add much insight in RDD
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DAG in Economics: Simultaneity

Con 3: DAG cannot capture some equilibrium concept in Economics

DAG by definition is not cyclical

They naturally cannot capture equilibrium behavior

They cannot express simultaneity issue

Here is an attempt from Imbens, though not so successful
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DAG in Economics

Why have we not seen too much usage of DAG in applied econ?

1. PO framework has several features fitting applied econ better

Some common assumptions (monotonicity) are easily captured in PO but not DAG
PO connects easily to traditional econ approaches
Applied Econ focuses on models with relatively few variables
PO accounts for heterogeneity better
PO connects closely to the implementation of the method and its inference

2. No substantive empirical examples are provided

We do not see concrete examples of implementing DAG in econ questions
Most of examples from Pearl are ”toy models”
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Personal View: Clarity in Illustration

But personally I think DAG does much better in showing ”bad control” problem

Simpson Paradox is illustrated very clearly in DAG

In PO, we usually select control variables pretty arbitrarily

Angrist only gives a rule-of-thumb: only control variables happening before
treatment
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Although this is useful, it is actually wrong: M-bias
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Personal View: Clarity in Illustration

We can see here the essence is that we should not control for colliders

Colliders do not necessarily happen after treatment

M-bias is the case when collider is a pre-determined variable
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Personal View: Clarity in Illustration

DAG gives us a powerful tool to select controls, given our assumptions of causal
structure

It forces us to firmly and explicitly consider our causal structure and show them in
a transparent way
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An Application in Economics: Pinto (2015)

Pinto (2015) Selection Bias in a Controlled Experiment: The Case of Moving to
Opportunity

This is the only applied ECON paper I’ve ever read using DAG and Bayesian
Networks

Sadly, in his latest version, Pinto deletes all DAG stuffs...

There are more than DAG in this paper → Choice model and IV

Pinto shows an interesting method to use WARP to achieve the identification

We will discuss it later
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Final Conclusion

DAG approach fully deserves the attention of all economists

It has advantages in clearly illustrating causal structures, guiding the selection of
controls, and dealing with models with large number of variables

However, it still has many weaknesses compared with PO in applying to economics

Especially, it lacks of concrete examples in applying this method in economics

It is still an open question to all economists! Chances here!
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