Frontier Topics in Empirical Economics: Week 7 Bartik Instruments

Zibin Huang ${ }^{1}$

${ }^{1}$ College of Business, Shanghai University of Finance and Economics
November 30, 2023

Introduction

Introduction

■ We have already learned some basic IV methods and their extensions

- Today we will investigate a particular type of IV

■ Bartik instrument, or shift-share instrument (SSIV)

- It is widely used in different contexts
- Especially trade and migration (spatial economics)

■ How should we use it? What is its regression assumption?

Introduction

- We have already learned some basic IV methods and their extensions
- Today we will investigate a particular type of IV
- Bartik instrument, or shift-share instrument (SSIV)
- It is widely used in different contexts
- Especially trade and migration (spatial economics)
- How should we use it? What is its regression assumption?

Introduction

- We have already learned some basic IV methods and their extensions

■ Today we will investigate a particular type of IV
■ Bartik instrument, or shift-share instrument (SSIV)

- It is widely used in different contexts
- Especially trade and migration (spatial economics)
- How should we use it? What is its regression assumption?

Introduction

- We have already learned some basic IV methods and their extensions

■ Today we will investigate a particular type of IV
■ Bartik instrument, or shift-share instrument (SSIV)

- It is widely used in different contexts
- Especially trade and migration (spatial economics)

■ How should we use it? What is its regression assumption?

Introduction

■ We have already learned some basic IV methods and their extensions
■ Today we will investigate a particular type of IV
■ Bartik instrument, or shift-share instrument (SSIV)

- It is widely used in different contexts
- Especially trade and migration (spatial economics)
n How should we use it? What is its regression assumption?

Introduction

- We have already learned some basic IV methods and their extensions

■ Today we will investigate a particular type of IV
■ Bartik instrument, or shift-share instrument (SSIV)

- It is widely used in different contexts
- Especially trade and migration (spatial economics)

■ How should we use it? What is its regression assumption?

Introduction

Introduction

- We will introduce two different frameworks of this instrument
- Goldsmith-Pinkham, Sorkin, and Swift (2020) consider share as IV, shift as weight - Borusyak, Hull, and Jaravel (2022) consider shift as IV, share as weight
- You can validate your regression by proving either set of assumptions are correct
- It depends on your context

Introduction

- We will introduce two different frameworks of this instrument
- Goldsmith-Pinkham, Sorkin, and Swift (2020) consider share as IV, shift as weight - Borusyak, Hull, and Jaravel (2022) consider shift as IV, share as weight
- You can validate your regression by proving either set of assumptions are correct
- It denends on your context

Introduction

- We will introduce two different frameworks of this instrument
- Goldsmith-Pinkham, Sorkin, and Swift (2020) consider share as IV, shift as weight
- Borusyak, Hull, and Jaravel (2022) consider shift as IV, share as weight
- You can validate your regression by proving either set of assumptions are correct
- It depends on your context

Introduction

- We will introduce two different frameworks of this instrument
- Goldsmith-Pinkham, Sorkin, and Swift (2020) consider share as IV, shift as weight - Borusyak, Hull, and Jaravel (2022) consider shift as IV, share as weight
- You can validate your regression by proving either set of assumptions are correct
- It depends on your context

Introduction

- We will introduce two different frameworks of this instrument
- Goldsmith-Pinkham, Sorkin, and Swift (2020) consider share as IV, shift as weight
- Borusyak, Hull, and Jaravel (2022) consider shift as IV, share as weight
- You can validate your regression by proving either set of assumptions are correct
- It depends on your context

Motivating Example: Card (2009)

Motivating Example: Card (2009)

- Let's start with an example from Card (2009)
- What is the impact of immigrant ratio on native-immigrant wage gap?

$$
\begin{equation*}
y_{l}=\beta_{0}+\beta \ln x_{l}+\beta_{2} C_{l}+\epsilon_{1} \tag{1}
\end{equation*}
$$

- I is location, y is log wage gap between immigrants and natives, x is ratio of immigrant labor to native labor, C is location-level control
- x is endogenous: Some positive productivity local shock affects both x and y

Motivating Example: Card (2009)

- Let's start with an example from Card (2009)
- What is the impact of immigrant ratio on native-immigrant wage gap?

$$
\begin{equation*}
y_{l}=\beta_{0}+\beta \ln x_{1}+\beta_{2} C_{l}+\epsilon_{l} \tag{1}
\end{equation*}
$$

- I is location, y is log wage gap between immigrants and natives, x is ratio of immigrant labor to native labor, C is location-level control
n x is endogenous: Some positive productivity local shock affects both x and y

Motivating Example: Card (2009)

- Let's start with an example from Card (2009)
- What is the impact of immigrant ratio on native-immigrant wage gap?

$$
\begin{equation*}
y_{l}=\beta_{0}+\beta \ln x_{I}+\beta_{2} C_{I}+\epsilon_{l} \tag{1}
\end{equation*}
$$

- I is location, y is log wage gap between immigrants and natives, x is ratio of immigrant labor to native labor, C is location-level control
- x is endogenous: Some positive productivity local shock affects both x and y

Motivating Example: Card (2009)

- Let's start with an example from Card (2009)

■ What is the impact of immigrant ratio on native-immigrant wage gap?

$$
\begin{equation*}
y_{l}=\beta_{0}+\beta \ln x_{I}+\beta_{2} C_{l}+\epsilon_{l} \tag{1}
\end{equation*}
$$

- I is location, y is log wage gap between immigrants and natives, x is ratio of immigrant labor to native labor, C is location-level control
■ x is endogenous: Some positive productivity local shock affects both x and y

Motivating Example: Card (2009)

Motivating Example: Card (2009)

■ Let's use an IV for x

- We have data for 1980,1990, and 2000
- We construct a shift-share IV B_{I} as follows:

$$
\begin{align*}
B_{1} & =\sum_{k} Z_{l k, 1980} \cdot g_{k} \tag{2}\\
Z_{I k, 1980} & =\left(N_{\mid k, 1980} / N_{k, 1980}\right) \times\left(1 / P_{l, 2000}\right) \tag{3}
\end{align*}
$$

- k is home country, $N_{I k, 1980}$ is the number of immigrants in I from k in 1980, $P_{l, 2000}$ is population in I in 2000
- $Z_{l k, 1980}$ evaluates the base year share of immigrants from k in /
- g_{k} is the number of people arriving the US from 1990 to 2000 from k

Motivating Example: Card (2009)

■ Let's use an IV for x
■ We have data for 1980,1990, and 2000

- We construct a shift-share IV B_{I} as follows

$$
\begin{aligned}
B_{l} & =\sum_{k} Z_{l k, 1980} \cdot g_{k} \\
Z_{l k, 1980} & =\left(N_{l k, 1980} / N_{k, 1980}\right) \times\left(1 / P_{l, 2000}\right)
\end{aligned}
$$

- k is home country, $N_{l k, 1980}$ is the number of immigrants in I from k in 1980, $P_{l, 2000}$ is population in I in 2000
- $Z_{l k} 1980$ evaluates the base year share of immigrants from k in /
- g_{k} is the number of people arriving the US from 1990 to 2000 from k

Motivating Example: Card (2009)

- Let's use an IV for x
- We have data for 1980,1990, and 2000

■ We construct a shift-share IV B_{I} as follows:

$$
\begin{align*}
B_{l} & =\sum_{k} Z_{l k, 1980} \cdot g_{k} \tag{2}\\
Z_{l k, 1980} & =\left(N_{l k, 1980} / N_{k, 1980}\right) \times\left(1 / P_{l, 2000}\right) \tag{3}
\end{align*}
$$

- k is home country, $N_{I k, 1980}$ is the number of immigrants in I from k in 1980, $P_{l, 2000}$ is population in I in 2000
■ $Z_{l k, 1980}$ evaluates the base year share of immigrants from k in /
- g_{k} is the number of people arriving the US from 1990 to 2000 from k

Motivating Example: Card (2009)

- Let's use an IV for x
- We have data for 1980,1990, and 2000

■ We construct a shift-share IV B_{I} as follows:

$$
\begin{align*}
B_{l} & =\sum_{k} Z_{l k, 1980} \cdot g_{k} \tag{2}\\
Z_{l k, 1980} & =\left(N_{l k, 1980} / N_{k, 1980}\right) \times\left(1 / P_{l, 2000}\right) \tag{3}
\end{align*}
$$

■ k is home country, $N_{I k, 1980}$ is the number of immigrants in I from k in 1980, $P_{I, 2000}$ is population in I in 2000

- $Z_{l k, 1980}$ evaluates the base year share of immigrants from k in /
- g_{k} is the number of people arriving the US from 1990 to 2000 from k

Motivating Example: Card (2009)

- Let's use an IV for x
- We have data for 1980,1990, and 2000

■ We construct a shift-share IV B_{I} as follows:

$$
\begin{align*}
B_{l} & =\sum_{k} Z_{l k, 1980} \cdot g_{k} \tag{2}\\
Z_{l k, 1980} & =\left(N_{l k, 1980} / N_{k, 1980}\right) \times\left(1 / P_{l, 2000}\right) \tag{3}
\end{align*}
$$

■ k is home country, $N_{I k, 1980}$ is the number of immigrants in I from k in 1980, $P_{I, 2000}$ is population in $/$ in 2000

- $Z_{l k, 1980}$ evaluates the base year share of immigrants from k in $/$
- g_{k} is the number of people arriving the US from 1990 to 2000 from k

Motivating Example: Card (2009)

- Let's use an IV for x
- We have data for 1980,1990, and 2000

■ We construct a shift-share IV B_{I} as follows:

$$
\begin{align*}
B_{l} & =\sum_{k} Z_{l k, 1980} \cdot g_{k} \tag{2}\\
Z_{l k, 1980} & =\left(N_{l k, 1980} / N_{k, 1980}\right) \times\left(1 / P_{l, 2000}\right) \tag{3}
\end{align*}
$$

■ k is home country, $N_{I k, 1980}$ is the number of immigrants in I from k in 1980, $P_{I, 2000}$ is population in $/$ in 2000
■ $Z_{l k, 1980}$ evaluates the base year share of immigrants from k in $/$

- g_{k} is the number of people arriving the US from 1990 to 2000 from k

Motivating Example: Card (2009)

Motivating Example: Card (2009)

- What is the basic idea of this IV?
- (1) Relevance: Clustering of immigrants from the same country (Chinese in SF)
- (2) Exclusion: The local exposure of the national shock is not related to other local shocks
- It decomposes local immigrant into local-origin country
- This is an instrument with "Local Share" \times "National Growth"
- We call this shift-share/Bartik instrument

Motivating Example: Card (2009)

■ What is the basic idea of this IV?

- (1) Relevance: Clustering of immigrants from the same country (Chinese in SF)
- (2) Exclusion: The local exposure of the national shock is not related to other local shocks
- It decomposes local immigrant into local-origin country
- This is an instrument with "Local Share" \times "National Growth'
- We call this shift-share/Bartik instrument

Motivating Example: Card (2009)

■ What is the basic idea of this IV?

- (1) Relevance: Clustering of immigrants from the same country (Chinese in SF)
- (2) Exclusion: The local exposure of the national shock is not related to other local shocks
- It decomposes local immigrant into local-origin country
- This is an instrument with "Local Share" \times "National Growth"
- We call this shift-share/Bartik instrument

Motivating Example: Card (2009)

■ What is the basic idea of this IV?

- (1) Relevance: Clustering of immigrants from the same country (Chinese in SF)
- (2) Exclusion: The local exposure of the national shock is not related to other local shocks
■ It decomposes local immigrant into local-origin country
- This is an instrument with "Local Share" \times "National Growth"
- We call this shift-share/Bartik instrument

Motivating Example: Card (2009)

■ What is the basic idea of this IV?

- (1) Relevance: Clustering of immigrants from the same country (Chinese in SF)
- (2) Exclusion: The local exposure of the national shock is not related to other local shocks
■ It decomposes local immigrant into local-origin country
- This is an instrument with "Local Share" \times "National Growth"
- We call this shift-share/Bartik instrument

Motivating Example: Card (2009)

■ What is the basic idea of this IV?

- (1) Relevance: Clustering of immigrants from the same country (Chinese in SF)
- (2) Exclusion: The local exposure of the national shock is not related to other local shocks
■ It decomposes local immigrant into local-origin country
- This is an instrument with "Local Share" \times "National Growth"

■ We call this shift-share/Bartik instrument

Motivating Example: Autor, Dorn, and Hanson (2013)

Motivating Example: Autor, Dorn, and Hanson (2013)

- Another important example is Autor, Dorn, and Hanson (2013) on China shock
- What is the impact of China's import on local labor market in the U.S.?
- They construct a shift-share variable as follows:

- i is region, j is industry, t is year
- $L_{i j t}$ is employment in region i industry j
- $L_{j t}$ is total employment in industry j in the U.S
- $L_{i t}$ is total employment in region i
- $\triangle M_{j}$ is import growth from China to the U.S. in industry j

Motivating Example: Autor, Dorn, and Hanson (2013)

- Another important example is Autor, Dorn, and Hanson (2013) on China shock

■ What is the impact of China's import on local labor market in the U.S.?

- They construct a shift-share variable as follows:

- i is region, j is industry, t is year
- $L_{i j t}$ is employment in region i industry j
- $L_{j t}$ is total employment in industry j in the U.S
- $L_{i t}$ is total employment in region i
$=\triangle M_{j t}$ is import growth from China to the U.S. in industry j

Motivating Example: Autor, Dorn, and Hanson (2013)

- Another important example is Autor, Dorn, and Hanson (2013) on China shock

■ What is the impact of China's import on local labor market in the U.S.?
■ They construct a shift-share variable as follows:

$$
\Delta I P W_{i t}=\sum_{j} \frac{L_{i j t}}{L_{j t} \cdot L_{i t}} \Delta M_{j t}
$$

- i is region, j is industry, t is year
- $I_{\text {Ijt }}$ is employment in region i industry j
- $L_{j t}$ is total employment in industry j in the U.S
- $L_{i t}$ is total employment in region i
- $\triangle M_{j}$ is import growth from China to the U.S. in industry j

Motivating Example: Autor, Dorn, and Hanson (2013)

- Another important example is Autor, Dorn, and Hanson (2013) on China shock

■ What is the impact of China's import on local labor market in the U.S.?

- They construct a shift-share variable as follows:

$$
\Delta I P W_{i t}=\sum_{j} \frac{L_{i j t}}{L_{j t} \cdot L_{i t}} \Delta M_{j t}
$$

■ i is region, j is industry, t is year

- $L_{i j t}$ is employment in region i industry j
$\square L_{j t}$ is total employment in industry j in the U.S
- $L_{i t}$ is total employment in region i
- $\triangle M_{j t}$ is import growth from China to the U.S. in industry j

Motivating Example: Autor, Dorn, and Hanson (2013)

- Another important example is Autor, Dorn, and Hanson (2013) on China shock

■ What is the impact of China's import on local labor market in the U.S.?

- They construct a shift-share variable as follows:

$$
\Delta I P W_{i t}=\sum_{j} \frac{L_{i j t}}{L_{j t} \cdot L_{i t}} \Delta M_{j t}
$$

■ i is region, j is industry, t is year

- $L_{i j t}$ is employment in region i industry j
- $L_{j t}$ is total employment in industry j in the U.S
- $L_{i t}$ is total employment in region i
- ΔM_{j+} is import growth from China to the U.S. in industry j

Motivating Example: Autor, Dorn, and Hanson (2013)

- Another important example is Autor, Dorn, and Hanson (2013) on China shock

■ What is the impact of China's import on local labor market in the U.S.?

- They construct a shift-share variable as follows:

$$
\Delta I P W_{i t}=\sum_{j} \frac{L_{i j t}}{L_{j t} \cdot L_{i t}} \Delta M_{j t}
$$

■ i is region, j is industry, t is year

- $L_{i j t}$ is employment in region i industry j

■ $L_{j t}$ is total employment in industry j in the U.S.

- Lit is total employment in region i
- $\Delta M_{j t}$ is import growth from China to the U.S. in industry j

Motivating Example: Autor, Dorn, and Hanson (2013)

- Another important example is Autor, Dorn, and Hanson (2013) on China shock
- What is the impact of China's import on local labor market in the U.S.?
- They construct a shift-share variable as follows:

$$
\Delta I P W_{i t}=\sum_{j} \frac{L_{i j t}}{L_{j t} \cdot L_{i t}} \Delta M_{j t}
$$

■ i is region, j is industry, t is year

- $L_{i j t}$ is employment in region i industry j
- $L_{j t}$ is total employment in industry j in the U.S.
- $L_{i t}$ is total employment in region i
- $\triangle M_{j t}$ is import growth from China to the U.S. in industry j

Motivating Example: Autor, Dorn, and Hanson (2013)

- Another important example is Autor, Dorn, and Hanson (2013) on China shock
- What is the impact of China's import on local labor market in the U.S.?

■ They construct a shift-share variable as follows:

$$
\Delta I P W_{i t}=\sum_{j} \frac{L_{i j t}}{L_{j t} \cdot L_{i t}} \Delta M_{j t}
$$

■ i is region, j is industry, t is year

- $L_{i j t}$ is employment in region i industry j
- $L_{j t}$ is total employment in industry j in the U.S.
- $L_{i t}$ is total employment in region i
- $\Delta M_{j t}$ is import growth from China to the U.S. in industry j

Goldsmith-Pinkham, Sorkin, and Swift (2020): Share as IV

Goldsmith-Pinkham, Sorkin, and Swift (2020): Share as IV

■ How to interpret this shift-share IV?

- Let's first investigate Goldsmith-Pinkham, Sorkin, and Swift (2020)
- In this paper, we consider share as IV, shift as weight

Goldsmith-Pinkham, Sorkin, and Swift (2020): Share as IV

■ How to interpret this shift-share IV?

- Let's first investigate Goldsmith-Pinkham, Sorkin, and Swift (2020)
- In this paper, we consider share as IV, shift as weight

Goldsmith-Pinkham, Sorkin, and Swift (2020): Share as IV

■ How to interpret this shift-share IV?

- Let's first investigate Goldsmith-Pinkham, Sorkin, and Swift (2020)
- In this paper, we consider share as IV, shift as weight

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

■ Let's define Bartik IV generally

- We have the following equation

$$
y_{l t}=D_{l t}^{\prime} \rho+x_{l t} \beta_{0}+\epsilon_{l t}
$$

- I is location; t is time; D are controls; β_{0} is parameter of interest

E- $x_{1 t}$ is some (employment) growth rate

- $y_{l t}$ is some (wage) outcome growth rate
- x and y can also be level variables when location FE is controlled
= We assume that $x_{i t} \# \epsilon_{i t}$, need an IV
- Bartik IV comes from two identities

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

- Let's define Bartik IV generally
- We have the following equation

$$
\begin{equation*}
y_{l t}=D_{l t}^{\prime} \rho+x_{l t} \beta_{0}+\epsilon_{l t} \tag{4}
\end{equation*}
$$

■ I is location; t is time; D are controls; β_{0} is parameter of interest
E $X_{i t}$ is some (employment) growth rate

- $y_{l t}$ is some (wage) outcome growth rate

E x and y can also be level variables when location FE is controlled

- We assume that $x_{l t}$ 业 $\epsilon_{l t}$, need an IV
- Bartik IV comes from two identities

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

■ Let's define Bartik IV generally

- We have the following equation

$$
\begin{equation*}
y_{l t}=D_{l t}^{\prime} \rho+x_{l t} \beta_{0}+\epsilon_{l t} \tag{4}
\end{equation*}
$$

- I is location; t is time; D are controls; β_{0} is parameter of interest
- $x_{l t}$ is some (employment) growth rate
- $y_{l t}$ is some (wage) outcome growth rate
- x and y can also be level variables when location FE is controlled
- We assume that $x_{I t} \mathbb{\#} \epsilon_{I t}$, need an IV
- Bartik IV comes from two identities

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

■ Let's define Bartik IV generally

- We have the following equation

$$
\begin{equation*}
y_{l t}=D_{l t}^{\prime} \rho+x_{l t} \beta_{0}+\epsilon_{l t} \tag{4}
\end{equation*}
$$

- I is location; t is time; D are controls; β_{0} is parameter of interest
- $x_{l t}$ is some (employment) growth rate
- $y_{l t}$ is some (wage) outcome growth rate
- x and y can also be level variables when location FE is controlled
= W/e assume that $x_{i t} \# \epsilon_{i t}$, need an IV
- Bartik IV comes from two identities

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

■ Let's define Bartik IV generally

- We have the following equation

$$
\begin{equation*}
y_{l t}=D_{l t}^{\prime} \rho+x_{l t} \beta_{0}+\epsilon_{l t} \tag{4}
\end{equation*}
$$

- I is location; t is time; D are controls; β_{0} is parameter of interest
- $x_{l t}$ is some (employment) growth rate
- $y_{l t}$ is some (wage) outcome growth rate
- x and y can also be level variables when location FE is controlled
- We assume that $x_{l t} \mathbb{\#} \epsilon_{l t}$, need an IV
- Bartik IV comes from two identities

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

■ Let's define Bartik IV generally

- We have the following equation

$$
\begin{equation*}
y_{l t}=D_{l t}^{\prime} \rho+x_{l t} \beta_{0}+\epsilon_{l t} \tag{4}
\end{equation*}
$$

- I is location; t is time; D are controls; β_{0} is parameter of interest
- $x_{l t}$ is some (employment) growth rate
- $y_{l t}$ is some (wage) outcome growth rate

■ x and y can also be level variables when location FE is controlled

- We assume that $x_{l t} \# \epsilon_{I t}$, need an IV
- Bartik IV comes from two identities

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

■ Let's define Bartik IV generally

- We have the following equation

$$
\begin{equation*}
y_{l t}=D_{l t}^{\prime} \rho+x_{l t} \beta_{0}+\epsilon_{l t} \tag{4}
\end{equation*}
$$

- I is location; t is time; D are controls; β_{0} is parameter of interest
- $x_{l t}$ is some (employment) growth rate
- $y_{l t}$ is some (wage) outcome growth rate

■ x and y can also be level variables when location FE is controlled

- We assume that $x_{l t} \mathbb{\#} \epsilon_{l t}$, need an IV
- Bartik IV comes from two identities

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

■ Let's define Bartik IV generally

- We have the following equation

$$
\begin{equation*}
y_{l t}=D_{l t}^{\prime} \rho+x_{l t} \beta_{0}+\epsilon_{l t} \tag{4}
\end{equation*}
$$

- I is location; t is time; D are controls; β_{0} is parameter of interest
- $x_{l t}$ is some (employment) growth rate
- $y_{l t}$ is some (wage) outcome growth rate

■ x and y can also be level variables when location FE is controlled

- We assume that $x_{l t} \mathbb{\#} \epsilon_{l t}$, need an IV
- Bartik IV comes from two identities

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

■ Identity 1: Decompose Location-level growth variable to location-industry-level variable and its growth

- Usually location-industry level, or in Card (2009), location-origin country level

$$
x_{l t}=Z_{l t} G_{l t}=\sum_{k=1}^{K} z_{l k t} g_{l k t}
$$

$z_{l k t}$ is the location-industry share at $t, g_{l k t}$ is the location-industry growth at t

- Identity 2: Decompose location-industry growth into national and local components

$$
g_{l k t}=g_{k t}+\tilde{g}_{l k t}
$$

$g_{k t}$ is the national industry growth, $\tilde{g}_{l k t}$ is the location-industry growth shock

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

■ Identity 1: Decompose Location-level growth variable to location-industry-level variable and its growth
■ Usually location-industry level, or in Card (2009), location-origin country level

$$
x_{l t}=Z_{l t} G_{l t}=\sum_{k=1}^{K} z_{l k t} g_{l k t}
$$

$z_{l k t}$ is the location-industry share at $t, g_{l k t}$ is the location-industry growth at t - Identity 2: Decompose location-industry growth into national and local components

$$
g_{l k t}=g_{k t}+\tilde{g}_{1 k t}
$$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

■ Identity 1: Decompose Location-level growth variable to location-industry-level variable and its growth

- Usually location-industry level, or in Card (2009), location-origin country level

$$
x_{l t}=Z_{l t} G_{l t}=\sum_{k=1}^{K} z_{l k t} g_{l k t}
$$

$z_{l k t}$ is the location-industry share at $t, g_{l k t}$ is the location-industry growth at t
■ Identity 2: Decompose location-industry growth into national and local components

$$
g_{l k t}=g_{k t}+\tilde{g}_{l k t}
$$

$g_{k t}$ is the national industry growth, $\tilde{g}_{l k t}$ is the location-industry growth shock

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

- Assume that we have a baseline period 0
- We construct Bartik IV $B_{l t}$ as:

$$
\begin{equation*}
B_{1 t}=Z_{10} G_{t}=\sum_{k} \underbrace{z_{1 k 0}}_{\text {Share }} \underbrace{g_{k t}}_{\text {Shift }} \tag{5}
\end{equation*}
$$

- The first part is the initial share of industry k in location I
- The second part is the national growth of industry k
- Fix z at 0 and drop $\tilde{g}_{1 k t}$ from the identity \Rightarrow Bartik IV

■ Before we formally establish the equivalence between Bartik IV and GMM

- Let's consider two special cases

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

- Assume that we have a baseline period 0

■ We construct Bartik IV $B_{l t}$ as:

$$
\begin{equation*}
B_{l t}=Z_{10} G_{t}=\sum_{k} \underbrace{z_{I k 0}}_{\text {Share }} \underbrace{g_{k t}}_{\text {Shift }} \tag{5}
\end{equation*}
$$

- The first part is the initial share of industry k in location /
- The second part is the national growth of industry k
- Fix z at 0 and drop $\tilde{g}_{1 k t}$ from the identity \Rightarrow Bartik IV
- Before we formally establish the equivalence between Bartik IV and GMM
- Let's consider two special cases

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

- Assume that we have a baseline period 0

■ We construct Bartik IV $B_{l t}$ as:

$$
\begin{equation*}
B_{l t}=Z_{l 0} G_{t}=\sum_{k} \underbrace{z_{l k 0}}_{\text {Share }} \underbrace{g_{k t}}_{\text {Shift }} \tag{5}
\end{equation*}
$$

- The first part is the initial share of industry k in location /
- The second part is the national growth of industry k
- Fix z at 0 and drop $\tilde{g}_{1 k t}$ from the identity \Rightarrow Bartik IV

■ Before we formally establish the equivalence between Bartik IV and GMM

- Let's consider two special cases

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

- Assume that we have a baseline period 0

■ We construct Bartik IV $B_{l t}$ as:

$$
\begin{equation*}
B_{l t}=Z_{10} G_{t}=\sum_{k} \underbrace{z_{I k 0}}_{\text {Share }} \underbrace{g_{k t}}_{\text {Shift }} \tag{5}
\end{equation*}
$$

- The first part is the initial share of industry k in location /
- The second part is the national growth of industry k
- Fix z at 0 and drop $\tilde{g}_{\mid k t}$ from the identity \Rightarrow Bartik IV

■ Before we formally establish the equivalence between Bartik IV and GMM

- Let's consider two special cases

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

- Assume that we have a baseline period 0

■ We construct Bartik IV $B_{l t}$ as:

$$
\begin{equation*}
B_{l t}=Z_{10} G_{t}=\sum_{k} \underbrace{z_{I k 0}}_{\text {Share }} \underbrace{g_{k t}}_{\text {Shift }} \tag{5}
\end{equation*}
$$

- The first part is the initial share of industry k in location /
- The second part is the national growth of industry k
- Fix z at 0 and drop $\tilde{g}_{l k t}$ from the identity \Rightarrow Bartik IV
- Before we formally establish the equivalence between Bartik IV and GMM
- Let's consider two special cases

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

- Assume that we have a baseline period 0

■ We construct Bartik IV $B_{l t}$ as:

$$
\begin{equation*}
B_{l t}=Z_{10} G_{t}=\sum_{k} \underbrace{z_{I k 0}}_{\text {Share }} \underbrace{g_{k t}}_{\text {Shift }} \tag{5}
\end{equation*}
$$

- The first part is the initial share of industry k in location /
- The second part is the national growth of industry k
- Fix z at 0 and drop $\tilde{g}_{l k t}$ from the identity \Rightarrow Bartik IV

■ Before we formally establish the equivalence between Bartik IV and GMM

- Let's consider two special cases

Goldsmith-Pinkham, Sorkin, and Swift (2020): Definition of Bartik IV

■ Assume that we have a baseline period 0
■ We construct Bartik IV $B_{l t}$ as:

$$
\begin{equation*}
B_{l t}=Z_{10} G_{t}=\sum_{k} \underbrace{z_{I k 0}}_{\text {Share }} \underbrace{g_{k t}}_{\text {Shift }} \tag{5}
\end{equation*}
$$

■ The first part is the initial share of industry k in location $/$

- The second part is the national growth of industry k
- Fix z at 0 and drop $\tilde{g}_{l k t}$ from the identity \Rightarrow Bartik IV

■ Before we formally establish the equivalence between Bartik IV and GMM

- Let's consider two special cases

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Case 1: Two industries and One period
- Shares sum to 1: $z_{12}=1-z_{11}$

$$
B_{l}=z_{11} g_{1}+z_{l 2} g_{2}=g_{2}+\left(g_{1}-g_{2}\right) z_{l 1}
$$

- We have the first stage

■ Using Bartik in 2SLS is identical to using single IV, z_{11}

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Case 1: Two industries and One period

■ Shares sum to 1 : $z_{/ 2}=1-z_{/ 1}$

$$
B_{l}=z_{l 1} g_{1}+z_{l 2} g_{2}=g_{2}+\left(g_{1}-g_{2}\right) z_{l 1}
$$

- We have the first stage

- Using Bartik in 2SLS is identical to using single IV, $z_{/ 1}$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Case 1: Two industries and One period

■ Shares sum to $1: z_{/ 2}=1-z_{/ 1}$

$$
B_{l}=z_{l 1} g_{1}+z_{l 2} g_{2}=g_{2}+\left(g_{1}-g_{2}\right) z_{l 1}
$$

■ We have the first stage:

$$
x_{I}=\gamma_{0}+\gamma B_{I}+\eta_{I}=\underbrace{\left(\gamma_{0}+\gamma g_{2}\right)}_{\text {constant }}+\underbrace{\gamma\left(g_{1}-g_{2}\right)}_{\text {coefficient }} z_{l 1}+\eta_{I}
$$

- Using Bartik in 2SLS is identical to using single IV, z_{11}

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Case 1: Two industries and One period

■ Shares sum to 1 : $z_{/ 2}=1-z_{/ 1}$

$$
B_{l}=z_{l 1} g_{1}+z_{l 2} g_{2}=g_{2}+\left(g_{1}-g_{2}\right) z_{l 1}
$$

- We have the first stage:

$$
x_{l}=\gamma_{0}+\gamma B_{I}+\eta_{I}=\underbrace{\left(\gamma_{0}+\gamma g_{2}\right)}_{\text {constant }}+\underbrace{\gamma\left(g_{1}-g_{2}\right)}_{\text {coefficient }} z_{l 1}+\eta_{I}
$$

■ Using Bartik in 2SLS is identical to using single IV, z_{11}

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Case 2: Two industries and Two periods

$$
B_{l t}=g_{1 t} z_{l 10}+g_{2 t} z_{l 20}=g_{2 t}+\left(g_{1 t}-g_{2 t}\right) z_{l 10}
$$

- Assume that we control for time FE, we have a first stage:

$$
x_{l t}=\tau_{t}+\gamma B_{l t}+\eta_{l t}=\underbrace{\left(\tau_{t}+g_{2 t} \gamma\right)}+z_{l 10}\left(g_{1 t}-g_{2 t}\right) \gamma+\eta_{l t}
$$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Case 2: Two industries and Two periods

$$
B_{l t}=g_{1 t} z_{l 10}+g_{2 t} z_{l 20}=g_{2 t}+\left(g_{1 t}-g_{2 t}\right) z_{l 10}
$$

- Assume that we control for time FE, we have a first stage:

$$
x_{l t}=\tau_{t}+\gamma B_{l t}+\eta_{l t}=\underbrace{\left(\tau_{t}+g_{2 t} \gamma\right)}_{\tilde{\tau}_{t}}+z_{l 10}\left(g_{1 t}-g_{2 t}\right) \gamma+\eta_{l t}
$$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Denote indicator function as $\mathbf{1}(\cdot)$, we have:

$$
g_{1 t}-g_{2 t}=\mathbf{1}(t=1)\left(g_{11}-g_{21}\right)+\mathbf{1}(t=2)\left(g_{12}-g_{22}\right)
$$

- Then first stage becomes

- This is running x on the time FE and two interactions of z_{10} and time dummies
- What is the underlying research desion here?

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Denote indicator function as $\mathbf{1}(\cdot)$, we have:

$$
g_{1 t}-g_{2 t}=\mathbf{1}(t=1)\left(g_{11}-g_{21}\right)+\mathbf{1}(t=2)\left(g_{12}-g_{22}\right)
$$

- Then first stage becomes:

$$
x_{l t}=\tilde{\tau}_{t}+z_{/ 10} \mathbf{1}(t=1) \underbrace{\left(g_{11}-g_{21}\right) \gamma}_{\text {rescaled parameter } \tilde{\gamma}_{1}}+z_{/ 10} \mathbf{1}(t=2) \underbrace{\left(g_{12}-g_{22}\right) \gamma}_{\text {rescaled parameter } \tilde{\gamma}_{2}}
$$

- This is running x on the time FE and two interactions of z_{110} and time dummies
- What is the underlying research design here?

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Denote indicator function as $\mathbf{1}(\cdot)$, we have:

$$
g_{1 t}-g_{2 t}=\mathbf{1}(t=1)\left(g_{11}-g_{21}\right)+\mathbf{1}(t=2)\left(g_{12}-g_{22}\right)
$$

- Then first stage becomes:

$$
x_{l t}=\tilde{\tau}_{t}+z_{l 10} \mathbf{1}(t=1) \underbrace{\left(g_{11}-g_{21}\right) \gamma}_{\text {rescaled parameter } \tilde{\gamma}_{1}}+z_{l 10} \mathbf{1}(t=2) \underbrace{\left(g_{12}-g_{22}\right) \gamma}_{\text {rescaled parameter } \tilde{\gamma}_{2}}
$$

- This is running x on the time FE and two interactions of $z_{/ 10}$ and time dummies
- What is the underlying research design here?

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Denote indicator function as $\mathbf{1}(\cdot)$, we have:

$$
g_{1 t}-g_{2 t}=\mathbf{1}(t=1)\left(g_{11}-g_{21}\right)+\mathbf{1}(t=2)\left(g_{12}-g_{22}\right)
$$

- Then first stage becomes:

$$
x_{l t}=\tilde{\tau}_{t}+z_{l 10} \mathbf{1}(t=1) \underbrace{\left(g_{11}-g_{21}\right) \gamma}_{\text {rescaled parameter } \tilde{\gamma}_{1}}+z_{l 10} \mathbf{1}(t=2) \underbrace{\left(g_{12}-g_{22}\right) \gamma}_{\text {rescaled parameter } \tilde{\gamma}_{2}}
$$

- This is running x on the time FE and two interactions of $z_{/ 10}$ and time dummies
- What is the underlying research design here?

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

■ Growth rate: policy effect size;

- Initial share: Exposure to some policy
- Whether locations with more industry 1 , experience different changes in following shocks whose effect depends on industry sizes
- More clear if we set $g_{11}-g_{21}=0$: Before policy/after policy
- DID specification! $\tilde{\gamma}_{1}=0 \Rightarrow$ parallel pre-trend

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Growth rate: policy effect size;
- Initial share: Exposure to some policy
- Whether locations with more industry 1, experience different changes in following shocks whose effect depends on industry sizes
- More clear if we set $g_{11}-g_{21}=0$: Before policy/after policy
- DID specification! $\tilde{\gamma}_{1}=0 \Rightarrow$ parallel pre-trend

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Growth rate: policy effect size;
- Initial share: Exposure to some policy

■ Whether locations with more industry 1, experience different changes in x following shocks whose effect depends on industry sizes

- More clear if we set $g_{11}-g_{21}=0$: Before policy/after policy

■ DID specification! $\tilde{\gamma}_{1}=0 \Rightarrow$ parallel pre-trend

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Growth rate: policy effect size;
- Initial share: Exposure to some policy

■ Whether locations with more industry 1, experience different changes in x following shocks whose effect depends on industry sizes
■ More clear if we set $g_{11}-g_{21}=0$: Before policy/after policy

- DID specification! $\tilde{\gamma}_{1}=0 \Rightarrow$ parallel pre-trend

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

■ Growth rate: policy effect size;

- Initial share: Exposure to some policy

■ Whether locations with more industry 1, experience different changes in x following shocks whose effect depends on industry sizes
■ More clear if we set $g_{11}-g_{21}=0$: Before policy/after policy
■ DID specification! $\tilde{\gamma}_{1}=0 \Rightarrow$ parallel pre-trend

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Assume that we have K industries and one period, stack all variables to matrix
- Let $M_{D}=1-D\left(D^{\prime} D\right)^{-1} D^{\prime}$ be the annihilator matrix, $X^{\perp}=M_{D} X$
- Z is share and G is shock

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Assume that we have K industries and one period, stack all variables to matrix
- Let $M_{D}=I-D\left(D^{\prime} D\right)^{-1} D^{\prime}$ be the annihilator matrix, $X^{\perp}=M_{D} X$
- Z is share and G is shock

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

■ Assume that we have K industries and one period, stack all variables to matrix

- Let $M_{D}=I-D\left(D^{\prime} D\right)^{-1} D^{\prime}$ be the annihilator matrix, $X^{\perp}=M_{D} X$

■ Z is share and G is shock

Proposition 1 in PSS(2020)

We define Bartik and GMM esimator using industry shares as instruments:

If $W=G G^{\prime}$, then $\hat{\beta}_{\text {Bartik }}=\hat{\beta}_{G M M}$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Assume that we have K industries and one period, stack all variables to matrix
- Let $M_{D}=I-D\left(D^{\prime} D\right)^{-1} D^{\prime}$ be the annihilator matrix, $X^{\perp}=M_{D} X$

■ Z is share and G is shock
Proposition 1 in PSS(2020)
We define Bartik and GMM esimator using industry shares as instruments:

$$
\hat{\beta}_{\text {Bartik }}=\frac{B^{\prime} Y^{\perp}}{B^{\prime} X^{\perp}}, \hat{\beta}_{G M M}=\frac{X^{\perp^{\prime}} Z W Z^{\prime} Y^{\perp}}{X^{\perp^{\prime} Z W Z^{\prime} X^{\perp}}}
$$

If $W=G G^{\prime}$, then $\hat{\beta}_{\text {Bartik }}=\hat{\beta}_{G M M}$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

■ Bartik IV is equivalent to GMM estimator with local industry shares as instruments and national growth rate variance as weights

- Combined just-identified vs. Multiple over-identified
- The results can be extended to K industries and T periods case

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

■ Bartik IV is equivalent to GMM estimator with local industry shares as instruments and national growth rate variance as weights
■ Combined just-identified vs. Multiple over-identified

- The results can be extended to K industries and T periods case

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

■ Bartik IV is equivalent to GMM estimator with local industry shares as instruments and national growth rate variance as weights
■ Combined just-identified vs. Multiple over-identified
■ The results can be extended to K industries and T periods case

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Asymptotic in location dimension: $L \rightarrow \infty$, with fixed T, K
- Asymptotic in other dimensions (and different research designs) are discussed in the next paper
- Assumption 1: Relevance
- Assumption 2 (Strict Exogeneity): $E\left[\epsilon_{l t} z_{l k 0} \mid D_{l t}\right]=0, \forall k$ with $g_{k} \neq 0$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Asymptotic in location dimension: $L \rightarrow \infty$, with fixed T, K
- Asymptotic in other dimensions (and different research designs) are discussed in the next paper
- Assumption 1: Relevance

■ Assumption 2 (Strict Exogeneity): $E\left[\epsilon_{I t} z_{l k 0} \mid D_{I t}\right]=0, \forall k$ with $g_{k} \neq 0$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Asymptotic in location dimension: $L \rightarrow \infty$, with fixed T, K
- Asymptotic in other dimensions (and different research designs) are discussed in the next paper
■ Assumption 1: Relevance
- Assumption 2 (Strict Exogeneity): $E\left[\epsilon_{\mid t} z_{\mid k 0} \mid D_{l t}\right]=0, \forall k$ with $g_{k} \neq 0$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Asymptotic in location dimension: $L \rightarrow \infty$, with fixed T, K
- Asymptotic in other dimensions (and different research designs) are discussed in the next paper
■ Assumption 1: Relevance
- Assumption 2 (Strict Exogeneity): $E\left[\epsilon_{l t} z_{l k} \mid D_{l t}\right]=0, \forall k$ with $g_{k} \neq 0$

Proposition 2 in PSS(2020)

Given assumption 1 and 2,

$$
\text { plim } \hat{\beta}_{\text {Bartik }}-\beta_{0}=0
$$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

- Asymptotic in location dimension: $L \rightarrow \infty$, with fixed T, K
- Asymptotic in other dimensions (and different research designs) are discussed in the next paper
■ Assumption 1: Relevance
■ Assumption 2 (Strict Exogeneity): $E\left[\epsilon_{l t} z_{l k 0} \mid D_{l t}\right]=0, \forall k$ with $g_{k} \neq 0$
Proposition 2 in PSS(2020)
Given assumption 1 and 2,

$$
\text { plim } \hat{\beta}_{\text {Bartik }}-\beta_{0}=0
$$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

Generally, when is Assumption 2 plausible?

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

Generally, when is Assumption 2 plausible?

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

Generally, when is Assumption 2 plausible?

- Initial industry share is mean independent of shocks on outcome levels Wrong!
- Initial industry share is mean independent of shocks on outcome changes Plausible
- Keep in mind, when using Bartik IV Either control for location+time FE, or use growth variable as y!

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

Generally, when is Assumption 2 plausible?

- Initial industry share is mean independent of shocks on outcome levels Wrong!
- Initial industry share is mean independent of shocks on outcome changes Plausible
- Keep in mind, when using Bartik IV Either control for location+time FE, or use growth variable as y !

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

Generally, when is Assumption 2 plausible?

- Initial industry share is mean independent of shocks on outcome levels Wrong!
- Initial industry share is mean independent of shocks on outcome changes Plausible
- Keep in mind, when using Bartik IV

Either control for location+time FE, or use growth variable as y !

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

When is Assumption 2 plausible?

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

When is Assumption 2 plausible?

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

When is Assumption 2 plausible?

- This is an "exposure design" (similar to DID)
- Different exposures of locations to national industry-level shocks affect outcomes only through changing x

■ There is no systematic difference in terms of unobserved local shocks for places with different exposures (parallel trend)

- Think of Shanghai, Hong Kong and Shenyang, Wuhan

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

When is Assumption 2 plausible?

- This is an "exposure design" (similar to DID)
- Different exposures of locations to national industry-level shocks affect outcomes only through changing x
- There is no systematic difference in terms of unobserved local shocks for places with different exposures (parallel trend)
- Think of Shanghai, Hong Kong and Shenyang, Wuhan

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

When is Assumption 2 plausible?

- This is an "exposure design" (similar to DID)
- Different exposures of locations to national industry-level shocks affect outcomes only through changing x
■ There is no systematic difference in terms of unobserved local shocks for places with different exposures (parallel trend)
- Think of Shanghai, Hong Kong and Shenyang, Wuhan

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

When is Assumption 2 plausible?

- This is an "exposure design" (similar to DID)
- Different exposures of locations to national industry-level shocks affect outcomes only through changing x
- There is no systematic difference in terms of unobserved local shocks for places with different exposures (parallel trend)
- Think of Shanghai, Hong Kong and Shenyang, Wuhan

```
= SH, HK are more involved in finance industry than SY, WH
■ If a financial crisis happens, SH, HK are more exposed
@ We have to assume that there is no other unobserved shocks hitting SH, HK and
    SY, WH differently
| The trend of economic situations (without crisis shock) should be parallel
```


Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

When is Assumption 2 plausible?

- This is an "exposure design" (similar to DID)
- Different exposures of locations to national industry-level shocks affect outcomes only through changing x
- There is no systematic difference in terms of unobserved local shocks for places with different exposures (parallel trend)
- Think of Shanghai, Hong Kong and Shenyang, Wuhan
- SH, HK are more involved in finance industry than SY, WH
- If a financial crisis happens, SH, HK are more exposed
- We have to assume that there is no other unobserved shocks hitting SH, HK and SY, WH differently
- The trend of economic situations (without crisis shock) should be parallel

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

When is Assumption 2 plausible?

- This is an "exposure design" (similar to DID)
- Different exposures of locations to national industry-level shocks affect outcomes only through changing x
- There is no systematic difference in terms of unobserved local shocks for places with different exposures (parallel trend)
- Think of Shanghai, Hong Kong and Shenyang, Wuhan
- SH, HK are more involved in finance industry than SY, WH
- If a financial crisis happens, SH, HK are more exposed
- We have to assume that there is no other unobserved shocks hitting SH, HK and SY, WH differently
- The trend of economic situations (without crisis shock) should be parallel

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

When is Assumption 2 plausible?
■ This is an "exposure design" (similar to DID)

- Different exposures of locations to national industry-level shocks affect outcomes only through changing x
■ There is no systematic difference in terms of unobserved local shocks for places with different exposures (parallel trend)
- Think of Shanghai, Hong Kong and Shenyang, Wuhan
- SH, HK are more involved in finance industry than SY, WH
- If a financial crisis happens, SH, HK are more exposed
- We have to assume that there is no other unobserved shocks hitting SH, HK and SY, WH differently
- The trend of economic situations (without crisis shock) should be parallel

Goldsmith-Pinkham, Sorkin, and Swift (2020): Bartik IV and GMM

When is Assumption 2 plausible?
■ This is an "exposure design" (similar to DID)

- Different exposures of locations to national industry-level shocks affect outcomes only through changing x
■ There is no systematic difference in terms of unobserved local shocks for places with different exposures (parallel trend)
- Think of Shanghai, Hong Kong and Shenyang, Wuhan
- SH, HK are more involved in finance industry than SY, WH
- If a financial crisis happens, SH, HK are more exposed
- We have to assume that there is no other unobserved shocks hitting SH, HK and SY, WH differently
- The trend of economic situations (without crisis shock) should be parallel

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

- Bartik IV is a combination of many industries (Black box)
- Which industry is driving the results?

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

- Bartik IV is a combination of many industries (Black box)
- Which industry is driving the results?

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

- We can decompose it into a combination of just-identified estimates on each instrument (for each industry)

Proposition 3 in PSS(2020)

We can write

where

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

- We can decompose it into a combination of just-identified estimates on each instrument (for each industry)

Proposition 3 in PSS(2020)
We can write

$$
\hat{\beta}_{\text {Bartik }}=\sum_{k} \hat{\alpha}_{k} \hat{\beta}_{k}
$$

where

$$
\hat{\beta}_{k}=\left(Z_{k}^{\prime} X^{\perp}\right)^{-1} Z_{k}^{\prime} Y^{\perp}, \hat{\alpha}_{k}=\frac{g_{k} Z_{k}^{\prime} X^{\perp}}{\sum_{k^{\prime}} g_{k^{\prime}} Z_{k^{\prime}}^{\prime} X^{\perp}}
$$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

■ We construct a single instrument for each industry $B_{k}=z_{l k 0} g_{k}$

- β_{k} is IV estimator for each instrument k

■ $\hat{\alpha}_{k}$ is called Rotemberg weight

- The Rotemberg weight means how important this single industry is
- If $\hat{\alpha}_{k}$ is large, misspecification on this industry is dangerous
- If $\hat{\alpha}_{k}$ is small, misspecification on this industry could be fine
- In practice, report industries with the highest weights

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

■ We construct a single instrument for each industry $B_{k}=z_{l k 0} g_{k}$

- $\hat{\beta}_{k}$ is IV estimator for each instrument k
- $\hat{\alpha}_{k}$ is called Rotemberg weight
- The Rotemberg weight means how important this single industry is
- If $\hat{\alpha}_{k}$ is large, misspecification on this industry is dangerous
- If $\hat{\alpha}_{k}$ is small, misspecification on this industry could be fine
- In practice, report industries with the highest weights

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

■ We construct a single instrument for each industry $B_{k}=z_{l k 0} g_{k}$

- $\hat{\beta}_{k}$ is IV estimator for each instrument k
- $\hat{\alpha}_{k}$ is called Rotemberg weight
- The Rotemberg weight means how important this single industry is
- If $\hat{\alpha}_{k}$ is large, misspecification on this industry is dangerous
- If $\hat{\alpha}_{k}$ is small, misspecification on this industry could be fine
- In practice, report industries with the highest weights

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

■ We construct a single instrument for each industry $B_{k}=z_{l k 0} g_{k}$

- $\hat{\beta}_{k}$ is IV estimator for each instrument k
- $\hat{\alpha}_{k}$ is called Rotemberg weight
- The Rotemberg weight means how important this single industry is
- If $\hat{\alpha}_{k}$ is large, misspecification on this industry is dangerous
- If $\hat{\alpha}_{k}$ is small, misspecification on this industry could be fine
- In practice renort industries with the highest weights

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

■ We construct a single instrument for each industry $B_{k}=z_{l k 0} g_{k}$

- $\hat{\beta}_{k}$ is IV estimator for each instrument k
- $\hat{\alpha}_{k}$ is called Rotemberg weight
- The Rotemberg weight means how important this single industry is
- If $\hat{\alpha}_{k}$ is large, misspecification on this industry is dangerous
- If $\hat{\alpha}_{k}$ is small, misspecification on this industry could be fine
- In practice, report industries with the highest weights

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

- We construct a single instrument for each industry $B_{k}=z_{l k 0} g_{k}$
- $\hat{\beta}_{k}$ is IV estimator for each instrument k
- $\hat{\alpha}_{k}$ is called Rotemberg weight
- The Rotemberg weight means how important this single industry is
- If $\hat{\alpha}_{k}$ is large, misspecification on this industry is dangerous

■ If $\hat{\alpha}_{k}$ is small, misspecification on this industry could be fine

- In practice, report industries with the highest weights

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

- We construct a single instrument for each industry $B_{k}=z_{l k} g_{k}$
- $\hat{\beta}_{k}$ is IV estimator for each instrument k
- $\hat{\alpha}_{k}$ is called Rotemberg weight
- The Rotemberg weight means how important this single industry is
- If $\hat{\alpha}_{k}$ is large, misspecification on this industry is dangerous

■ If $\hat{\alpha}_{k}$ is small, misspecification on this industry could be fine
■ In practice, report industries with the highest weights

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

Tips

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

Tips

- This decomposition is different from the main GMM interpretation
- Bartik IV and GMM equivalence is discussed in a joint estimation context
- Bartik IV is equivalent to a joint GMM with shares as IVs (in one regression)
- Bartik IV decomposition means Bartik IV can be decomposed to a combination of K separately estimated IV estimators
- We run these IV regs one by one (for each industry share), then take weighted average of each regression coefficient β_{k}

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

Tips

- This decomposition is different from the main GMM interpretation

■ Bartik IV and GMM equivalence is discussed in a joint estimation context

- Bartik IV is equivalent to a joint GMM with shares as IVs (in one regression)
- Bartik IV decomposition means Bartik IV can be decomposed to a combination of K separately estimated IV estimators
- We run these IV regs one by one (for each industry share), then take weighted average of each regression coefficient $\hat{\beta}_{k}$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

Tips

- This decomposition is different from the main GMM interpretation

■ Bartik IV and GMM equivalence is discussed in a joint estimation context

- Bartik IV is equivalent to a joint GMM with shares as IVs (in one regression)
- Bartik IV decomposition means Bartik IV can be decomposed to a combination of K separately estimated IV estimators
- We run these IV regs one by one (for each industry share), then take weighted average of each regression coefficient β_{k}

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

Tips

- This decomposition is different from the main GMM interpretation

■ Bartik IV and GMM equivalence is discussed in a joint estimation context

- Bartik IV is equivalent to a joint GMM with shares as IVs (in one regression)
- Bartik IV decomposition means Bartik IV can be decomposed to a combination of K separately estimated IV estimators
- We run these IV regs one by one (for each industry share), then take weighted average of each regression coefficient β_{k}

Goldsmith-Pinkham, Sorkin, and Swift (2020): Decompose Bartik IV

Tips

- This decomposition is different from the main GMM interpretation

■ Bartik IV and GMM equivalence is discussed in a joint estimation context

- Bartik IV is equivalent to a joint GMM with shares as IVs (in one regression)
- Bartik IV decomposition means Bartik IV can be decomposed to a combination of K separately estimated IV estimators
■ We run these IV regs one by one (for each industry share), then take weighted average of each regression coefficient $\hat{\beta}_{k}$

Goldsmith-Pinkham, Sorkin, and Swift (2020): Heterogeneous TE

Goldsmith-Pinkham, Sorkin, and Swift (2020): Heterogeneous TE

■ In a restricted heterogeneous effect case: Bartik IV is a combination of location level treatment effect

- Weights can be negative: lead the estimator to be uninterpretable
- For single industry share IV:

We need an assumption similar to monotonicity in Imbens and Angrist (1994)

- For combined Bartik IV

Monotonicity for each single instrument is not enough

- In general, Bartik IV does not have a LATE interpretation

Goldsmith-Pinkham, Sorkin, and Swift (2020): Heterogeneous TE

- In a restricted heterogeneous effect case: Bartik IV is a combination of location level treatment effect
- Weights can be negative: lead the estimator to be uninterpretable
- For single industry share IV:

We need an assumption similar to monotonicity in Imbens and Angrist (1994)

- For combined Bartik IV:

Monotonicity for each single instrument is not enough

- In general, Bartik IV does not have a LATE interpretation

Goldsmith-Pinkham, Sorkin, and Swift (2020): Heterogeneous TE

■ In a restricted heterogeneous effect case: Bartik IV is a combination of location level treatment effect

■ Weights can be negative: lead the estimator to be uninterpretable

- For single industry share IV:

We need an assumption similar to monotonicity in Imbens and Angrist (1994)

- For combined Bartik IV:

Monotonicity for each single instrument is not enough

- In general, Bartik IV does not have a LATE interpretation

Goldsmith-Pinkham, Sorkin, and Swift (2020): Heterogeneous TE

■ In a restricted heterogeneous effect case: Bartik IV is a combination of location level treatment effect
■ Weights can be negative: lead the estimator to be uninterpretable
■ For single industry share IV:
We need an assumption similar to monotonicity in Imbens and Angrist (1994)

- For combined Bartik IV:

Monotonicity for each single instrument is not enough

- In general, Bartik IV does not have a LATE interpretation

Goldsmith-Pinkham, Sorkin, and Swift (2020): Heterogeneous TE

■ In a restricted heterogeneous effect case: Bartik IV is a combination of location level treatment effect
■ Weights can be negative: lead the estimator to be uninterpretable
■ For single industry share IV:
We need an assumption similar to monotonicity in Imbens and Angrist (1994)

- For combined Bartik IV:

Monotonicity for each single instrument is not enough
■ In general, Bartik IV does not have a LATE interpretation

Goldsmith-Pinkham, Sorkin, and Swift (2020): Heterogeneous TE

Goldsmith-Pinkham, Sorkin, and Swift (2020): Heterogeneous TE

- You will find similar things in the forthcoming lectures when we discuss complicated DID designs
- When treatment effect patterns become more and more complicated
- For instance dynamic, heterogeneous
- You can hardly identify meaningful causal parameters using simple regressions
- Is this just coincidence?
- No. This is an intrinsically problem. Think about why

Goldsmith-Pinkham, Sorkin, and Swift (2020): Heterogeneous TE

- You will find similar things in the forthcoming lectures when we discuss complicated DID designs
■ When treatment effect patterns become more and more complicated
- For instance dynamic, heterogeneous.
- You can hardly identify meaningful causal parameters using simple regressions
- Is this just coincidence?
- No. This is an intrinsically problem. Think about why

Goldsmith-Pinkham, Sorkin, and Swift (2020): Heterogeneous TE

- You will find similar things in the forthcoming lectures when we discuss complicated DID designs
■ When treatment effect patterns become more and more complicated
- For instance dynamic, heterogeneous...
- You can hardly identify meaningful causal parameters using simple regressions
- Is this just coincidence?
- No. This is an intrinsically problem. Think about why

Goldsmith-Pinkham, Sorkin, and Swift (2020): Heterogeneous TE

- You will find similar things in the forthcoming lectures when we discuss complicated DID designs
- When treatment effect patterns become more and more complicated

■ For instance dynamic, heterogeneous...

- You can hardly identify meaningful causal parameters using simple regressions
- Is this just coincidence?
- No. This is an intrinsically problem. Think about why

Goldsmith-Pinkham, Sorkin, and Swift (2020): Heterogeneous TE

- You will find similar things in the forthcoming lectures when we discuss complicated DID designs
- When treatment effect patterns become more and more complicated

■ For instance dynamic, heterogeneous...
■ You can hardly identify meaningful causal parameters using simple regressions
■ Is this just coincidence?

- No. This is an intrinsically problem. Think about why

Goldsmith-Pinkham, Sorkin, and Swift (2020): Heterogeneous TE

- You will find similar things in the forthcoming lectures when we discuss complicated DID designs
- When treatment effect patterns become more and more complicated

■ For instance dynamic, heterogeneous...
■ You can hardly identify meaningful causal parameters using simple regressions

- Is this just coincidence?
- No. This is an intrinsically problem. Think about why

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

- Now we have introduced an econometrics analysis of the Bartik IV
- What should we do in our empirical research if we want to interpret Bartik IV in the framework of Goldsmith-Pinkham, Sorkin, and Swift (2020)?

E First remember, always add in Iocation and time FF

- Second, focus on industries with high Rotemberg weights

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

■ Now we have introduced an econometrics analysis of the Bartik IV

- What should we do in our empirical research if we want to interpret Bartik IV in the framework of Goldsmith-Pinkham, Sorkin, and Swift (2020)?
- First, remember, always add in location and time FE
- Second, focus on industries with high Rotemberg weights

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

■ Now we have introduced an econometrics analysis of the Bartik IV

- What should we do in our empirical research if we want to interpret Bartik IV in the framework of Goldsmith-Pinkham, Sorkin, and Swift (2020)?
- First, remember, always add in location and time FE

■ Second, focus on industries with high Rotemberg weights

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

■ Now we have introduced an econometrics analysis of the Bartik IV

- What should we do in our empirical research if we want to interpret Bartik IV in the framework of Goldsmith-Pinkham, Sorkin, and Swift (2020)?
- First, remember, always add in location and time FE
- Second, focus on industries with high Rotemberg weights

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

Some tests you can implement

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

Some tests you can implement

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

Some tests you can implement
■ Test 1: Correlations of controls and industry compositions

- Assume that there are some covariates predicting changes in y not through x
- Test whether these location covariates are correlated with the industry shares
- Since industry shares need to affect y only through changes in x
- This is a balance test
- Example: y is employment; x is wage; z is manufacturing share; covariate d is immigrant share
- A suggestion from GSS: control for higher level shares

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

Some tests you can implement

- Test 1: Correlations of controls and industry compositions
- Assume that there are some covariates predicting changes in y not through x
- Test whether these location covariates are correlated with the industry shares
- Since industry shares need to affect y only through changes in x
- This is a balance test
- Example: y is employment; x is wage; z is manufacturing share; covariate d is immigrant share
- A suggestion from GSS: control for higher level shares

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

Some tests you can implement

- Test 1: Correlations of controls and industry compositions
- Assume that there are some covariates predicting changes in y not through x
- Test whether these location covariates are correlated with the industry shares
- Since industry shares need to affect y only through changes in x
- This is a balance test
- Example: y is employment; x is wage; z is manufacturing share; covariate d is immigrant share
- A suggestion from GSS: control for higher level shares

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

Some tests you can implement

- Test 1: Correlations of controls and industry compositions
- Assume that there are some covariates predicting changes in y not through x
- Test whether these location covariates are correlated with the industry shares
- Since industry shares need to affect y only through changes in x
- This is a balance test
- Example: y is employment; x is wage; z is manufacturing share; covariate d is immigrant share
- A suggestion from GSS: control for higher level shares

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

Some tests you can implement

- Test 1: Correlations of controls and industry compositions
- Assume that there are some covariates predicting changes in y not through x
- Test whether these location covariates are correlated with the industry shares
- Since industry shares need to affect y only through changes in x
- This is a balance test
- Example: y is employment; x is wage; z is manufacturing share; covariate d is immigrant share
- A suggestion from GSS: control for higher level shares

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

Some tests you can implement

- Test 1: Correlations of controls and industry compositions
- Assume that there are some covariates predicting changes in y not through x
- Test whether these location covariates are correlated with the industry shares
- Since industry shares need to affect y only through changes in x
- This is a balance test

■ Example: y is employment; x is wage; z is manufacturing share; covariate d is immigrant share

- A suggestion from GSS: control for higher level shares

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

Some tests you can implement

- Test 1: Correlations of controls and industry compositions
- Assume that there are some covariates predicting changes in y not through x
- Test whether these location covariates are correlated with the industry shares
- Since industry shares need to affect y only through changes in x
- This is a balance test

■ Example: y is employment; x is wage; z is manufacturing share; covariate d is immigrant share

- A suggestion from GSS: control for higher level shares

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

■ Test 2: Test for pre-trends if you have pre-shock period

- In specification with pre-period, you are doing DID
- Initial shares are local policy exposure; Growth rates are policy size
- Check pre-trends for both overall Bartik IV/ and single industry IV/ with high weight
- Whether locations with high shares of a main industry is different to locations with low shares in trends

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

■ Test 2: Test for pre-trends if you have pre-shock period
■ In specification with pre-period, you are doing DID

- Initial shares are local policy exposure; Growth rates are policy size

■ Check pre-trends for both overall Bartik IV and single industry IV with high weight

- Whether locations with high shares of a main industry is different to locations with low shares in trends

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

■ Test 2: Test for pre-trends if you have pre-shock period
■ In specification with pre-period, you are doing DID
■ Initial shares are local policy exposure; Growth rates are policy size
n Check pre-trends for both overall Bartik IV and single industry IV with high weight

- Whether locations with high shares of a main industry is different to locations with low shares in trends

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

■ Test 2: Test for pre-trends if you have pre-shock period
■ In specification with pre-period, you are doing DID
■ Initial shares are local policy exposure; Growth rates are policy size
■ Check pre-trends for both overall Bartik IV and single industry IV with high weight

- Whether locations with high shares of a main industry is different to locations with low shares in trends

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

- Test 2: Test for pre-trends if you have pre-shock period

■ In specification with pre-period, you are doing DID
■ Initial shares are local policy exposure; Growth rates are policy size
■ Check pre-trends for both overall Bartik IV and single industry IV with high weight

- Whether locations with high shares of a main industry is different to locations with low shares in trends

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

- Test 3: Overidentification Tests
- The main equivalence result tells us Bartik IV is an overidentified GMM
- Let's run overidentification test to check the validity of the bundle of share instruments
- If it is rejected, there are two possibilities
- Either your instruments are not exogenous (misspecification)
- Or there is heterogeneous treatment effect etc
- This is not so recommended

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

- Test 3: Overidentification Tests

■ The main equivalence result tells us Bartik IV is an overidentified GMM

- Let's run overidentification test to check the validity of the bundle of share instruments
- If it is rejected, there are two possibilities
- Either your instruments are not exogenous (misspecification)
- Or there is heterogeneous treatment effect etc.
- This is not so recommended

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

- Test 3: Overidentification Tests

■ The main equivalence result tells us Bartik IV is an overidentified GMM
■ Let's run overidentification test to check the validity of the bundle of share instruments

- If it is rejected, there are two possibilities
- Either your instruments are not exogenous (misspecification)
- Or there is heterogeneous treatment effect etc.
- This is not so recommended

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

- Test 3: Overidentification Tests

■ The main equivalence result tells us Bartik IV is an overidentified GMM
■ Let's run overidentification test to check the validity of the bundle of share instruments

- If it is rejected, there are two possibilities
- Either your instruments are not exogenous (misspecification)
- Or there is heterogeneous treatment effect etc.
- This is not so recommended

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

- Test 3: Overidentification Tests

■ The main equivalence result tells us Bartik IV is an overidentified GMM
■ Let's run overidentification test to check the validity of the bundle of share instruments

- If it is rejected, there are two possibilities

■ Either your instruments are not exogenous (misspecification)

- Or there is heterogeneous treatment effect etc.
- This is not so recommended

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

- Test 3: Overidentification Tests

■ The main equivalence result tells us Bartik IV is an overidentified GMM
■ Let's run overidentification test to check the validity of the bundle of share instruments

- If it is rejected, there are two possibilities
- Either your instruments are not exogenous (misspecification)

■ Or there is heterogeneous treatment effect etc...

- This is not so recommended

Goldsmith-Pinkham, Sorkin, and Swift (2020): Empirical Suggestions

- Test 3: Overidentification Tests

■ The main equivalence result tells us Bartik IV is an overidentified GMM
■ Let's run overidentification test to check the validity of the bundle of share instruments

- If it is rejected, there are two possibilities

■ Either your instruments are not exogenous (misspecification)
■ Or there is heterogeneous treatment effect etc...
■ This is not so recommended

Borusyak, Hull, and Jaravel (2022): Shift as IV

Borusyak, Hull, and Jaravel (2022): Shift as IV

■ We have already investigated Goldsmith-Pinkham, Sorkin, and Swift (2020)

- They interpret the share part as IV and the shift part as weight
- Another framework is proposed by Borusyak, Hull, and Jaravel (2022)
- In contrast, they interpret the shift part as IV and the share part as weight
- The identification assumption then becomes the "random assignment of shocks'

Borusyak, Hull, and Jaravel (2022): Shift as IV

■ We have already investigated Goldsmith-Pinkham, Sorkin, and Swift (2020)
■ They interpret the share part as IV and the shift part as weight

- Another framework is proposed by Borusyak, Hull, and Jaravel (2022)

■ In contrast, they interpret the shift part as IV and the share part as weight

- The identification assumption then becomes the "random assignment of shocks'

Borusyak, Hull, and Jaravel (2022): Shift as IV

■ We have already investigated Goldsmith-Pinkham, Sorkin, and Swift (2020)
■ They interpret the share part as IV and the shift part as weight
■ Another framework is proposed by Borusyak, Hull, and Jaravel (2022)

- In contrast, they interpret the shift part as IV and the share part as weight
- The identification assumption then becomes the "random assignment of shocks"

Borusyak, Hull, and Jaravel (2022): Shift as IV

■ We have already investigated Goldsmith-Pinkham, Sorkin, and Swift (2020)
■ They interpret the share part as IV and the shift part as weight
■ Another framework is proposed by Borusyak, Hull, and Jaravel (2022)
■ In contrast, they interpret the shift part as IV and the share part as weight

- The identification assumption then becomes the "random assignment of shocks'

Borusyak, Hull, and Jaravel (2022): Shift as IV

■ We have already investigated Goldsmith-Pinkham, Sorkin, and Swift (2020)
■ They interpret the share part as IV and the shift part as weight

- Another framework is proposed by Borusyak, Hull, and Jaravel (2022)

■ In contrast, they interpret the shift part as IV and the share part as weight

- The identification assumption then becomes the "random assignment of shocks"

Borusyak, Hull, and Jaravel (2022): Settings

Borusyak, Hull, and Jaravel (2022): Settings

- Assume that we have the following shift-share IV:

$$
z_{l}=\sum_{k} s_{l k} g_{k}, \quad k=1,2, \ldots, K
$$

- $s_{l k}$ is the share of industry k in location /
- g_{k} is the national shift for industry k
- We seek to estimate parameter β in the following regression $y_{I}=\beta x_{I}+w_{l}^{\prime} \gamma+\epsilon_{I}$
- w is the set of controls
= A valid instrument satisfies moment condition: $E\left[\sum_{l} z_{l} \epsilon_{l}\right]=0$

Borusyak, Hull, and Jaravel (2022): Settings

- Assume that we have the following shift-share IV:

$$
z_{l}=\sum_{k} s_{l k} g_{k}, \quad k=1,2, \ldots, K
$$

- $s_{l k}$ is the share of industry k in location $/$
- g_{k} is the national shift for industry k
- We seek to estimate parameter β in the following regression:
- w is the set of controls
- A valid instrument satisfies moment condition: $E\left[\sum, z_{l} \epsilon_{l}\right]=0$

Borusyak, Hull, and Jaravel (2022): Settings

- Assume that we have the following shift-share IV:

$$
z_{l}=\sum_{k} s_{l k} g_{k}, \quad k=1,2, \ldots, K
$$

- $s_{l k}$ is the share of industry k in location $/$
- g_{k} is the national shift for industry k
- We seek to estimate parameter β in the following regression
- w is the set of controls
- A valid instrument satisfies moment condition: $E\left[\sum_{l} z_{l} \epsilon_{l}\right]=0$

Borusyak, Hull, and Jaravel (2022): Settings

- Assume that we have the following shift-share IV:

$$
z_{l}=\sum_{k} s_{l k} g_{k}, \quad k=1,2, \ldots, K
$$

- $s_{l k}$ is the share of industry k in location $/$
- g_{k} is the national shift for industry k

■ We seek to estimate parameter β in the following regression:

$$
y_{l}=\beta x_{l}+w_{l}^{\prime} \gamma+\epsilon_{l}
$$

- w is the set of controls
- A valid instrument satisfies moment condition: $E\left[\sum, z_{l} \epsilon_{l}\right]=0$

Borusyak, Hull, and Jaravel (2022): Settings

- Assume that we have the following shift-share IV:

$$
z_{l}=\sum_{k} s_{l k} g_{k}, \quad k=1,2, \ldots, K
$$

- $s_{l k}$ is the share of industry k in location $/$
- g_{k} is the national shift for industry k

■ We seek to estimate parameter β in the following regression:

$$
y_{l}=\beta x_{l}+w_{l}^{\prime} \gamma+\epsilon_{l}
$$

- w is the set of controls
- A valid instrument satisfies moment condition:

```
E[ (\suml zl \epsilonl| ] = 0
```


Borusyak, Hull, and Jaravel (2022): Settings

- Assume that we have the following shift-share IV:

$$
z_{l}=\sum_{k} s_{l k} g_{k}, \quad k=1,2, \ldots, K
$$

- $s_{l k}$ is the share of industry k in location $/$
- g_{k} is the national shift for industry k
- We seek to estimate parameter β in the following regression:

$$
y_{l}=\beta x_{l}+w_{l}^{\prime} \gamma+\epsilon_{l}
$$

- w is the set of controls
- A valid instrument satisfies moment condition: $E\left[\sum_{l} z_{l} \epsilon_{l}\right]=0$

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

- Now we derive the equivalence between the original regression and a shock-level regression
- Plug the definition of SSIV into the moment condition:

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ Now we derive the equivalence between the original regression and a shock-level regression

- Plug the definition of SSIV into the moment condition:

$$
E\left[\sum_{l} z_{l} \epsilon_{l}\right]=E\left[\sum_{l} \sum_{k} s_{l k} g_{k} \epsilon_{l}\right]
$$

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ We exchange the order of the summation and have:

$$
\begin{aligned}
E\left[\sum_{l} z_{l} \epsilon_{l}\right] & =E\left[\sum_{k} \sum_{l} s_{l k} g_{k} \epsilon_{l}\right]=E\left[\sum_{k} g_{k} \sum_{l} s_{l k} \epsilon_{l}\right] \\
& =E\left[\sum_{k} g_{k}\left(\frac{\sum_{l} s_{l k} \epsilon_{l} \cdot \sum_{l} s_{l k}}{\sum_{l} s_{l k}}\right)\right]=E\left[\sum_{k} s_{k} g_{k} \bar{\epsilon}_{k}\right]
\end{aligned}
$$

- $s_{k}=\sum_{l} s_{\mid k}$ is the sum of shares of industry k for all locations
- $s_{k}=1$ in many common examples
$=\bar{\epsilon}_{k}=\frac{\sum_{1} s_{k} \epsilon_{1}}{\sum_{l} s_{k}}$ is a weighted average of unobserved terms
- It transforms the original ϵ from location-level / to industry-level k

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ We exchange the order of the summation and have:

$$
\begin{aligned}
E\left[\sum_{l} z_{l} \epsilon_{l}\right] & =E\left[\sum_{k} \sum_{l} s_{l k} g_{k} \epsilon_{l}\right]=E\left[\sum_{k} g_{k} \sum_{l} s_{l k} \epsilon_{l}\right] \\
& =E\left[\sum_{k} g_{k}\left(\frac{\sum_{l} s_{l k} \epsilon_{l} \cdot \sum_{l} s_{l k}}{\sum_{l} s_{l k}}\right)\right]=E\left[\sum_{k} s_{k} g_{k} \bar{\epsilon}_{k}\right]
\end{aligned}
$$

- $s_{k}=\sum_{l} s_{l k}$ is the sum of shares of industry k for all locations
- $s_{k}=1$ in many common examples
- $\bar{\epsilon}_{k}=\frac{\sum_{l} s_{k} \epsilon_{l}}{\sum_{s} s_{k}}$ is a weighted average of unobserved terms
- It transforms the original ϵ from location-level / to industry-level k

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ We exchange the order of the summation and have:

$$
\begin{aligned}
E\left[\sum_{l} z_{l} \epsilon_{l}\right] & =E\left[\sum_{k} \sum_{l} s_{l k} g_{k} \epsilon_{l}\right]=E\left[\sum_{k} g_{k} \sum_{l} s_{l k} \epsilon_{l}\right] \\
& =E\left[\sum_{k} g_{k}\left(\frac{\sum_{l} s_{l k} \epsilon_{l} \cdot \sum_{l} s_{l k}}{\sum_{l} s_{l k}}\right)\right]=E\left[\sum_{k} s_{k} g_{k} \bar{\epsilon}_{k}\right]
\end{aligned}
$$

- $s_{k}=\sum_{l} s_{l k}$ is the sum of shares of industry k for all locations
- $s_{k}=1$ in many common examples
- $\bar{\epsilon}_{k}=\frac{\sum_{1} s_{|k|} \epsilon_{l}}{\sum_{\mid s_{k}}}$ is a weighted average of unobserved terms
- It transforms the original ϵ from location-level / to industry-level k

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ We exchange the order of the summation and have:

$$
\begin{aligned}
E\left[\sum_{l} z_{l} \epsilon_{l}\right] & =E\left[\sum_{k} \sum_{l} s_{l k} g_{k} \epsilon_{l}\right]=E\left[\sum_{k} g_{k} \sum_{l} s_{l k} \epsilon_{l}\right] \\
& =E\left[\sum_{k} g_{k}\left(\frac{\sum_{l} s_{l k} \epsilon_{l} \cdot \sum_{l} s_{l k}}{\sum_{l} s_{l k}}\right)\right]=E\left[\sum_{k} s_{k} g_{k} \bar{\epsilon}_{k}\right]
\end{aligned}
$$

■ $s_{k}=\sum_{l} s_{l k}$ is the sum of shares of industry k for all locations

- $s_{k}=1$ in many common examples

■ $\bar{\epsilon}_{k}=\frac{\sum_{l} s_{l k} \epsilon_{l}}{\sum_{l} s_{k}}$ is a weighted average of unobserved terms

- It transforms the original ϵ from location-level / to industry-level k

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ We exchange the order of the summation and have:

$$
\begin{aligned}
E\left[\sum_{l} z_{l} \epsilon_{l}\right] & =E\left[\sum_{k} \sum_{l} s_{l k} g_{k} \epsilon_{l}\right]=E\left[\sum_{k} g_{k} \sum_{l} s_{l k} \epsilon_{l}\right] \\
& =E\left[\sum_{k} g_{k}\left(\frac{\sum_{l} s_{l k} \epsilon_{l} \cdot \sum_{l} s_{l k}}{\sum_{l} s_{l k}}\right)\right]=E\left[\sum_{k} s_{k} g_{k} \bar{\epsilon}_{k}\right]
\end{aligned}
$$

■ $s_{k}=\sum_{l} s_{l k}$ is the sum of shares of industry k for all locations

- $s_{k}=1$ in many common examples

■ $\bar{\epsilon}_{k}=\frac{\sum_{l} s_{k} \epsilon_{l}}{\sum_{l} s_{k}}$ is a weighted average of unobserved terms
■ It transforms the original ϵ from location-level $/$ to industry-level k

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

- Therefore, it transforms the identification assumption from / level to k level
- Now assume that we want to identify the effect of U.S. tariff on employment in China
- What is the research design here?
- Can you interpret the identification assumption at k level?

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

- Therefore, it transforms the identification assumption from / level to k level
- Now assume that we want to identify the effect of U.S. tariff on employment in China
- What is the research design here?
- Can you interpret the identification assumption at k level?

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

- Therefore, it transforms the identification assumption from / level to k level
- Now assume that we want to identify the effect of U.S. tariff on employment in China
- What is the research design here?
- Can you interpret the identification assumption at k level?

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

- Therefore, it transforms the identification assumption from / level to k level
- Now assume that we want to identify the effect of U.S. tariff on employment in China
- What is the research design here?
- Can you interpret the identification assumption at k level?

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

- The industry demand shocks g_{k} must be orthogonal with the industry-level unobservables $\bar{\epsilon}_{k}$, the average local supply shocks in different regions weighted by industry size
- Industries experiencing a rise in tariff should not face systematically different labor supply shocks in their primary markets
- Assume a U.S. tariff hits steel industry in China, which hits Hebei hard
- We should expect no labor supply shocks in Hebei, such as a change of enrollment quota in Gaokao

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

- The industry demand shocks g_{k} must be orthogonal with the industry-level unobservables $\bar{\epsilon}_{k}$, the average local supply shocks in different regions weighted by industry size
- Industries experiencing a rise in tariff should not face systematically different labor supply shocks in their primary markets
- Assume a U.S. tariff hits steel industry in China, which hits Hebei hard
- We should expect no labor supply shocks in Hebei, such as a change of enrollment quota in Gaokao

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

- The industry demand shocks g_{k} must be orthogonal with the industry-level unobservables $\bar{\epsilon}_{k}$, the average local supply shocks in different regions weighted by industry size
■ Industries experiencing a rise in tariff should not face systematically different labor supply shocks in their primary markets
■ Assume a U.S. tariff hits steel industry in China, which hits Hebei hard
- We should expect no labor supply shocks in Hebei, such as a change of enrollment quota in Gaokao

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

- The industry demand shocks g_{k} must be orthogonal with the industry-level unobservables $\bar{\epsilon}_{k}$, the average local supply shocks in different regions weighted by industry size
- Industries experiencing a rise in tariff should not face systematically different labor supply shocks in their primary markets
- Assume a U.S. tariff hits steel industry in China, which hits Hebei hard

■ We should expect no labor supply shocks in Hebei, such as a change of enrollment quota in Gaokao

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ Now we have the following proposition

Proposition 1 in BHJ (2022)

The SSIV estimator $\hat{\beta}$ equals the second-stage coefficient from a s_{k}-weighted shock-level IV regression that uses the shocks g_{k} as the instrument in estimating
where $\bar{v}=\frac{\sum_{l} s_{l k} v_{l}}{\sum_{l} s_{l k}}$ denotes an exposure-weighted average of a variable v_{l}

- This proposition 1 establishes the equivalence between the original and the shock-level regressions

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ Now we have the following proposition

Proposition 1 in $\mathrm{BHJ}(2022)$

The SSIV estimator $\hat{\beta}$ equals the second-stage coefficient from a s_{k}-weighted shock-level IV regression that uses the shocks g_{k} as the instrument in estimating

$$
\bar{y}_{k}=\alpha+\beta \bar{x}_{k}+\bar{\epsilon}_{k}
$$

where $\bar{v}=\frac{\sum_{l} s_{l k} v_{l}}{\sum_{l} s_{l k}}$ denotes an exposure-weighted average of a variable v_{l}

- This proposition 1 establishes the equivalence between the original and the shock-level regressions

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ Now we have the following proposition

Proposition 1 in $\mathrm{BHJ}(2022)$

The SSIV estimator $\hat{\beta}$ equals the second-stage coefficient from a s_{k}-weighted shock-level IV regression that uses the shocks g_{k} as the instrument in estimating

$$
\bar{y}_{k}=\alpha+\beta \bar{x}_{k}+\bar{\epsilon}_{k}
$$

where $\bar{v}=\frac{\sum_{l} s_{l k} v_{l}}{\sum_{l} s_{l k}}$ denotes an exposure-weighted average of a variable v_{l}

- This proposition 1 establishes the equivalence between the original and the shock-level regressions

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ We establish the consistency of this estimator under two assumptions:

```
- Assumption 1: \(E\left[g_{k} \mid \bar{\epsilon}, s\right]\), quasi-random shock assignment
■ Assumption 2: \(E\left[\sum_{k} s_{k}^{2}\right] \rightarrow 0, \operatorname{Cov}\left[g_{k}, g_{k^{\prime}} \mid \bar{\epsilon}, s\right]=0\), many uncorrelated shocks
industries should not be too concentrated
```

Proposition 3 in BHJ(2022)
Suppose Assumptions 1-2 and some other regularity conditions hold, we have

- Identification is valid when shocks are random

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ We establish the consistency of this estimator under two assumptions:

- Assumption 1: $E\left[g_{k} \mid \bar{\epsilon}, s\right]$, quasi-random shock assignment


```
industries should not be too concentrated
```


Propostition 3 in $\mathrm{BHJ}(2022)$

Suppose Assumptions 1-2 and some other regularity conditions hold, we have:

- Identification is valid when shocks are random

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ We establish the consistency of this estimator under two assumptions:

- Assumption 1: $E\left[g_{k} \mid \bar{\epsilon}, s\right]$, quasi-random shock assignment
- Assumption 2: $E\left[\sum_{k} s_{k}^{2}\right] \rightarrow 0, \operatorname{Cov}\left[g_{k}, g_{k^{\prime}} \mid \bar{\epsilon}, s\right]=0$, many uncorrelated shocks industries should not be too concentrated

Proposition 3 in BHJ (2022)

Suppose Assumptions 1-2 and some other regularity conditions hold, we have

- Identification is valid' when shocks are random

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ We establish the consistency of this estimator under two assumptions:

- Assumption 1: $E\left[g_{k} \mid \bar{\epsilon}, s\right]$, quasi-random shock assignment
- Assumption 2: $E\left[\sum_{k} s_{k}^{2}\right] \rightarrow 0, \operatorname{Cov}\left[g_{k}, g_{k^{\prime}} \mid \bar{\epsilon}, s\right]=0$, many uncorrelated shocks industries should not be too concentrated

Proposition 3 in $\mathrm{BHJ}(2022)$
Suppose Assumptions 1-2 and some other regularity conditions hold, we have: $\hat{\beta} \xrightarrow{p} \beta$

- Identification is valid when shocks are random

Borusyak, Hull, and Jaravel (2022): Shock-level Equivalence

■ We establish the consistency of this estimator under two assumptions:

- Assumption 1: $E\left[g_{k} \mid \bar{\epsilon}, s\right]$, quasi-random shock assignment
- Assumption 2: $E\left[\sum_{k} s_{k}^{2}\right] \rightarrow 0, \operatorname{Cov}\left[g_{k}, g_{k^{\prime}} \mid \bar{\epsilon}, s\right]=0$, many uncorrelated shocks industries should not be too concentrated

Proposition 3 in $\mathrm{BHJ}(2022)$
Suppose Assumptions 1-2 and some other regularity conditions hold, we have: $\hat{\beta} \xrightarrow{p} \beta$

- Identification is valid when shocks are random

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

■ The first empirical suggestion is about the inference of the std err

- Adao, Kolesár, and Morales (2019) show that the traditional inference is incorrect since samples in the SSIV setting are intrinsically not i.i.d

■ Because there is common shock components g_{k} and ν_{k} in ϵ_{l} and z_{l}
n ϵ_{I} and z_{l} are mechanically correlated across observations

- The correlations are large for locations with similar industry shares

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

■ The first empirical suggestion is about the inference of the std err

- Adao, Kolesár, and Morales (2019) show that the traditional inference is incorrect since samples in the SSIV setting are intrinsically not i.i.d.
- Because there is common shock components g_{k} and ν_{k} in ϵ_{I} and z_{l}
- ϵ_{l} and $z_{/}$are mechanically correlated across observations
- The correlations are 'arge for locations with similar industry shares

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

■ The first empirical suggestion is about the inference of the std err

- Adao, Kolesár, and Morales (2019) show that the traditional inference is incorrect since samples in the SSIV setting are intrinsically not i.i.d.
■ Because there is common shock components g_{k} and ν_{k} in ϵ_{l} and z_{l}
- ϵ_{l} and z_{I} are mechanically correlated across observations
- The correlations are large for locations with similar industry shares

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

■ The first empirical suggestion is about the inference of the std err

- Adao, Kolesár, and Morales (2019) show that the traditional inference is incorrect since samples in the SSIV setting are intrinsically not i.i.d.
- Because there is common shock components g_{k} and ν_{k} in ϵ_{l} and z_{l}

■ ϵ_{l} and z_{l} are mechanically correlated across observations

- The correlations are large for locations with similar industry shares

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

■ The first empirical suggestion is about the inference of the std err

- Adao, Kolesár, and Morales (2019) show that the traditional inference is incorrect since samples in the SSIV setting are intrinsically not i.i.d.

■ Because there is common shock components g_{k} and ν_{k} in ϵ_{l} and z_{l}

- ϵ_{l} and z_{l} are mechanically correlated across observations
- The correlations are large for locations with similar industry shares

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

■ Borusyak, Hull, and Jaravel (2022) show that the shock-level regression does not suffer from this

- You can directly use the traditional std err and Cl estimated here

■ A stata package can help you run this shock-level regression: ssaggregate

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

■ Borusyak, Hull, and Jaravel (2022) show that the shock-level regression does not suffer from this

■ You can directly use the traditional std err and Cl estimated here

- A stata package can help you run this shock-level regression: ssaggregate

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

■ Borusyak, Hull, and Jaravel (2022) show that the shock-level regression does not suffer from this

- You can directly use the traditional std err and Cl estimated here

■ A stata package can help you run this shock-level regression: ssaggregate

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

- The second empirical suggestion is about the descriptive test for IV validity
- A simple balance test is to regress some pre-determined control $r_{\text {l }}$ on IV z_{l}
- $r_{\text {l }}$ can be location level GDP, population etc.
- This can be combined with the Oster bound method
- Another balance test is to start from a shock-level confounder r_{k}
- Then construct observation-level average $r_{l}=\sum_{k} s_{l k} r_{k}$
- Then run this average r_{1} on $I V z_{1}$

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

- The second empirical suggestion is about the descriptive test for IV validity

■ A simple balance test is to regress some pre-determined control r_{l} on IV z_{l}

- $r_{\text {I }}$ can be location level GDP, population etc.
- This can be combined with the Oster bound method
- Another balance test is to start from a shock-level confounder r_{k}
- Then construct observation-level average $r_{l}=\sum_{k} s_{k} r_{k}$
- Then run this average r_{1} on IV z_{1}

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

- The second empirical suggestion is about the descriptive test for IV validity

■ A simple balance test is to regress some pre-determined control r_{l} on IV z_{l}

- $r_{\text {I }}$ can be location level GDP, population etc...
- This can be combined with the Oster bound method
- Another balance test is to start from a shock-level confounder r_{k}
= Then construct observation-level average $r_{l}=\sum_{k} s_{i k} r_{k}$
- Then run this average r_{1} on IV z_{1}

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

- The second empirical suggestion is about the descriptive test for IV validity

■ A simple balance test is to regress some pre-determined control r_{l} on IV z_{l}

- $r_{\text {I }}$ can be location level GDP, population etc...
- This can be combined with the Oster bound method
a Another balance test is to start from a shock-level confounder r_{k}
- Then construct observation-level average $r_{l}=\sum_{k} s_{l k} r_{k}$
- Then run this average r_{1} on IV z_{1}

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

- The second empirical suggestion is about the descriptive test for IV validity

■ A simple balance test is to regress some pre-determined control r_{l} on IV z_{l}

- $r_{\text {I }}$ can be location level GDP, population etc...
- This can be combined with the Oster bound method
- Another balance test is to start from a shock-level confounder r_{k}
- Then construct observation-level average $r_{l}=\sum_{k} s_{l k} r_{k}$
- Then run this average r_{1} on IV z_{l}

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

- The second empirical suggestion is about the descriptive test for IV validity

■ A simple balance test is to regress some pre-determined control r_{l} on IV z_{l}

- $r_{\text {I }}$ can be location level GDP, population etc...
- This can be combined with the Oster bound method
- Another balance test is to start from a shock-level confounder r_{k}

■ Then construct observation-level average $r_{l}=\sum_{k} s_{l k} r_{k}$

- Then run this average $r_{\text {I }}$ on IV z_{l}

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

- The second empirical suggestion is about the descriptive test for IV validity
- A simple balance test is to regress some pre-determined control r_{l} on IV z_{l}
- $r_{\text {I }}$ can be location level GDP, population etc...
- This can be combined with the Oster bound method
- Another balance test is to start from a shock-level confounder r_{k}

■ Then construct observation-level average $r_{l}=\sum_{k} s_{l k} r_{k}$
■ Then run this average $r_{\text {l }}$ on IV z_{l}

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

■ Another possible way to implement the balance test is to transform everything to k level

- We can aggregate location I level confounder r_{l} to industry k level by $r_{k}=\sum_{l} s_{\mid k} r_{l}$

■ Then we run this r_{k} on shock g_{k}

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

■ Another possible way to implement the balance test is to transform everything to k level

■ We can aggregate location / level confounder r_{l} to industry k level by $r_{k}=\sum_{l} s_{l k} r_{l}$

- Then we run this r_{k} on shock g_{k}

Borusyak, Hull, and Jaravel (2022): Empirical Suggestions

- Another possible way to implement the balance test is to transform everything to k level
- We can aggregate location / level confounder r_{l} to industry k level by $r_{k}=\sum_{l} s_{l k} r_{l}$

■ Then we run this r_{k} on shock g_{k}

Comparison of the Two Frameworks

Comparison of the Two Frameworks

■ We have introduced two frameworks to understand Bartik IV

- The first is Goldsmith-Pinkham, Sorkin, and Swift (2020)
- The second is Borusyak, Hull, and Jaravel (2022)

Comparison of the Two Frameworks

■ We have introduced two frameworks to understand Bartik IV

- The first is Goldsmith-Pinkham, Sorkin, and Swift (2020)
- Equivalence: GMM with share as instrument, shift as weight
- Research design: Exposure DID
- Assumption: Locations with different shares have parallel trend
- The second is Borusyak, Hull, and Jaravel (2022)

Comparison of the Two Frameworks

■ We have introduced two frameworks to understand Bartik IV

- The first is Goldsmith-Pinkham, Sorkin, and Swift (2020)
- Equivalence: GMM with share as instrument, shift as weight
- Research design: Exposure DID
- Assumption: Locations with different shares have parallel trend
- The second is Borusyak, Hull, and Jaravel (2022)

Comparison of the Two Frameworks

■ We have introduced two frameworks to understand Bartik IV

- The first is Goldsmith-Pinkham, Sorkin, and Swift (2020)
- Equivalence: GMM with share as instrument, shift as weight
- Research design: Exposure DID
- Assumption: Locations with different shares have parallel trend
- The second is Borusyak, Hull, and Jaravel (2022)

Comparison of the Two Frameworks

■ We have introduced two frameworks to understand Bartik IV

- The first is Goldsmith-Pinkham, Sorkin, and Swift (2020)
- Equivalence: GMM with share as instrument, shift as weight
- Research design: Exposure DID
- Assumption: Locations with different shares have parallel trend
- The second is Borusyak, Hull, and Jaravel (2022)

Comparison of the Two Frameworks

■ We have introduced two frameworks to understand Bartik IV

- The first is Goldsmith-Pinkham, Sorkin, and Swift (2020)
- Equivalence: GMM with share as instrument, shift as weight
- Research design: Exposure DID
- Assumption: Locations with different shares have parallel trend
- The second is Borusyak, Hull, and Jaravel (2022)
- Equivalence: Shock-level regression, shift as instrument, share as weight
- Research design: Randomly assigned shocks
- Assumption: Industries with large shocks do not have systematic different other unobserved shocks in their primary market (location)

Comparison of the Two Frameworks

■ We have introduced two frameworks to understand Bartik IV

- The first is Goldsmith-Pinkham, Sorkin, and Swift (2020)
- Equivalence: GMM with share as instrument, shift as weight
- Research design: Exposure DID
- Assumption: Locations with different shares have parallel trend
- The second is Borusyak, Hull, and Jaravel (2022)
- Equivalence: Shock-level regression, shift as instrument, share as weight
- Research design: Randomly assigned shocks
- Assumption: Industries with large shocks do not have systematic different other unobserved shocks in their primary market (location)

Comparison of the Two Frameworks

■ We have introduced two frameworks to understand Bartik IV

- The first is Goldsmith-Pinkham, Sorkin, and Swift (2020)
- Equivalence: GMM with share as instrument, shift as weight
- Research design: Exposure DID
- Assumption: Locations with different shares have parallel trend
- The second is Borusyak, Hull, and Jaravel (2022)
- Equivalence: Shock-level regression, shift as instrument, share as weight
- Research design: Randomly assigned shocks
- Assumption: Industries with large shocks do not have systematic different other unobserved shocks in their primary market (location)

Comparison of the Two Frameworks

■ We have introduced two frameworks to understand Bartik IV

- The first is Goldsmith-Pinkham, Sorkin, and Swift (2020)
- Equivalence: GMM with share as instrument, shift as weight
- Research design: Exposure DID
- Assumption: Locations with different shares have parallel trend
- The second is Borusyak, Hull, and Jaravel (2022)
- Equivalence: Shock-level regression, shift as instrument, share as weight
- Research design: Randomly assigned shocks
- Assumption: Industries with large shocks do not have systematic different other unobserved shocks in their primary market (location)

Comparison of the Two Frameworks

Comparison of the Two Frameworks

■ When should we use these two frameworks?

- We should consider Goldsmith-Pinkham, Sorkin, and Swift (2020) when
- We should consider Borusyak, Hull, and Jaravel (2022) when

Comparison of the Two Frameworks

■ When should we use these two frameworks?
■ We should consider Goldsmith-Pinkham, Sorkin, and Swift (2020) when

- Exogeneity comes from share
- Emphasize differential exposure to common shocks (DID design)
- Fixed small number of industries $\left(K=K^{*}, L \rightarrow \infty\right)$
- Focus on shock exposure of several specific industries
- Have some exposure shares tailored to the specific policy question
- We should consider Borusvak. Hull, and Jaravel (2022) when

Comparison of the Two Frameworks

■ When should we use these two frameworks?
■ We should consider Goldsmith-Pinkham, Sorkin, and Swift (2020) when

- Exogeneity comes from share
- Emphasize differential exposure to common shocks (DID design)
- Fixed small number of industries ($K=K^{*}, L \rightarrow \infty$)
- Focus on shock exposure of several specific industries
- Have some exposure shares tailored to the specific policy question
- We should consider Borusyak, Hull, and Jaravel (2022) when

Comparison of the Two Frameworks

■ When should we use these two frameworks?
■ We should consider Goldsmith-Pinkham, Sorkin, and Swift (2020) when

- Exogeneity comes from share
- Emphasize differential exposure to common shocks (DID design)
- Fixed small number of industries $\left(K=K^{*}, L \rightarrow \infty\right)$
- Focus on shock exposure of several specific industries
- Have some exposure shares tailored to the specific policy question
- We should consider Borusyak, Hull, and Jaravel (2022) when

Comparison of the Two Frameworks

■ When should we use these two frameworks?
■ We should consider Goldsmith-Pinkham, Sorkin, and Swift (2020) when

- Exogeneity comes from share
- Emphasize differential exposure to common shocks (DID design)
- Fixed small number of industries ($K=K^{*}, L \rightarrow \infty$)
- Focus on shock exposure of several specific industries
- Have some exposure shares tailored to the specific policy question

■ We should consider Borusyak, Hull, and Jaravel (2022) when

Comparison of the Two Frameworks

■ When should we use these two frameworks?
■ We should consider Goldsmith-Pinkham, Sorkin, and Swift (2020) when

- Exogeneity comes from share
- Emphasize differential exposure to common shocks (DID design)
- Fixed small number of industries ($K=K^{*}, L \rightarrow \infty$)
- Focus on shock exposure of several specific industries
- Have some exposure shares tailored to the specific policy question
- We should consider Borusyak, Hull, and Jaravel (2022) when

Comparison of the Two Frameworks

■ When should we use these two frameworks?
■ We should consider Goldsmith-Pinkham, Sorkin, and Swift (2020) when

- Exogeneity comes from share
- Emphasize differential exposure to common shocks (DID design)
- Fixed small number of industries ($K=K^{*}, L \rightarrow \infty$)
- Focus on shock exposure of several specific industries
- Have some exposure shares tailored to the specific policy question
- We should consider Borusyak, Hull, and Jaravel (2022) when

Comparison of the Two Frameworks

■ When should we use these two frameworks?
■ We should consider Goldsmith-Pinkham, Sorkin, and Swift (2020) when

- Exogeneity comes from share
- Emphasize differential exposure to common shocks (DID design)
- Fixed small number of industries ($K=K^{*}, L \rightarrow \infty$)
- Focus on shock exposure of several specific industries
- Have some exposure shares tailored to the specific policy question

■ We should consider Borusyak, Hull, and Jaravel (2022) when

- Exogeneity comes from shift (shock)
- We believe shocks are randomly assigned
- Fixed small number of locations $\left(K \rightarrow \infty, L=L^{*}\right)$
- Whenever the second-stage error $\epsilon_{I k}$ has a shift-share structure Mechanical correlation between Bartik IV and this error $\epsilon_{l k}=\sum_{k} s_{l k} \epsilon_{k}$

Comparison of the Two Frameworks

■ When should we use these two frameworks?
■ We should consider Goldsmith-Pinkham, Sorkin, and Swift (2020) when

- Exogeneity comes from share
- Emphasize differential exposure to common shocks (DID design)
- Fixed small number of industries ($K=K^{*}, L \rightarrow \infty$)
- Focus on shock exposure of several specific industries
- Have some exposure shares tailored to the specific policy question

■ We should consider Borusyak, Hull, and Jaravel (2022) when

- Exogeneity comes from shift (shock)
- We believe shocks are randomly assigned
- Fixed small number of locations ($K \rightarrow \infty, L=L^{*}$)
- Whenever the second-stage error $\epsilon_{l k}$ has a shift-share structure Mechanical correlation between Bartik IV and this error $\epsilon_{l k}=\sum_{k} s_{l k} \epsilon_{k}$

Comparison of the Two Frameworks

■ When should we use these two frameworks?
■ We should consider Goldsmith-Pinkham, Sorkin, and Swift (2020) when

- Exogeneity comes from share
- Emphasize differential exposure to common shocks (DID design)
- Fixed small number of industries ($K=K^{*}, L \rightarrow \infty$)
- Focus on shock exposure of several specific industries
- Have some exposure shares tailored to the specific policy question

■ We should consider Borusyak, Hull, and Jaravel (2022) when

- Exogeneity comes from shift (shock)
- We believe shocks are randomly assigned
- Fixed small number of locations ($K \rightarrow \infty, L=L^{*}$)
- Whenever the second-stage error $\epsilon_{l k}$ has a shift-share structure Mechanical correlation between Bartik IV and this error $\epsilon_{l k}=\sum_{k} s_{l k} \epsilon_{k}$

Comparison of the Two Frameworks

■ When should we use these two frameworks?
■ We should consider Goldsmith-Pinkham, Sorkin, and Swift (2020) when

- Exogeneity comes from share
- Emphasize differential exposure to common shocks (DID design)
- Fixed small number of industries ($K=K^{*}, L \rightarrow \infty$)
- Focus on shock exposure of several specific industries
- Have some exposure shares tailored to the specific policy question

■ We should consider Borusyak, Hull, and Jaravel (2022) when

- Exogeneity comes from shift (shock)
- We believe shocks are randomly assigned
- Fixed small number of locations ($K \rightarrow \infty, L=L^{*}$)
- Whenever the second-stage error $\epsilon_{l k}$ has a shift-share structure

Mechanical correlation between Bartik IV and this error $\epsilon_{l k}=\sum_{k} s_{l k} \epsilon_{k}$

Comparison of the Two Frameworks

■ When should we use these two frameworks?
■ We should consider Goldsmith-Pinkham, Sorkin, and Swift (2020) when

- Exogeneity comes from share
- Emphasize differential exposure to common shocks (DID design)
- Fixed small number of industries ($K=K^{*}, L \rightarrow \infty$)
- Focus on shock exposure of several specific industries
- Have some exposure shares tailored to the specific policy question

■ We should consider Borusyak, Hull, and Jaravel (2022) when

- Exogeneity comes from shift (shock)
- We believe shocks are randomly assigned
- Fixed small number of locations ($K \rightarrow \infty, L=L^{*}$)
- Whenever the second-stage error $\epsilon_{l k}$ has a shift-share structure Mechanical correlation between Bartik IV and this error $\epsilon_{l k}=\sum_{k} s_{l k} \epsilon_{k}$

Application: Autor, Dorn, and Hanson (2013)

Application: Autor, Dorn, and Hanson (2013)

- The paper report this week is Autor, Dorn, and Hanson (2013)
- Impact of import from China on the local labor markets in the U.S., "China Syndrome'
= Goldsmith-Pinkham, Sorkin, and Swift (2020) and Borusyak, Hull, and Jaravel (2022) use this paper as an example
- To show how to apply their frameworks
- Please not only read the original paper, but also read the corresponding part in Goldsmith-Pinkham, Sorkin, and Swift (2020) and Borusyak, Hull, and Jaravel (2022)

Application: Autor, Dorn, and Hanson (2013)

- The paper report this week is Autor, Dorn, and Hanson (2013)
- Impact of import from China on the local labor markets in the U.S., " China Syndrome"
- Goldsmith-Pinkham, Sorkin, and Swift (2020) and Borusyak, Hull, and Jaravel (2022) use this paper as an example
- To show how to apply their frameworks
- Please not only read the original paper, but also read the corresponding part in Goldsmith-Pinkham, Sorkin, and Swift (2020) and Borusyak, Hull, and Jaravel (2022)

Application: Autor, Dorn, and Hanson (2013)

- The paper report this week is Autor, Dorn, and Hanson (2013)

■ Impact of import from China on the local labor markets in the U.S., " China Syndrome"
■ Goldsmith-Pinkham, Sorkin, and Swift (2020) and Borusyak, Hull, and Jaravel (2022) use this paper as an example

- To show how to apply their frameworks
- Please not only read the original paper, but also read the corresponding part in Goldsmith-Pinkham, Sorkin, and Swift (2020) and Borusyak, Hull, and Jaravel (2022)

Application: Autor, Dorn, and Hanson (2013)

- The paper report this week is Autor, Dorn, and Hanson (2013)

■ Impact of import from China on the local labor markets in the U.S., " China Syndrome"
■ Goldsmith-Pinkham, Sorkin, and Swift (2020) and Borusyak, Hull, and Jaravel (2022) use this paper as an example

- To show how to apply their frameworks
- Please not only read the original paper, but also read the corresponding part in Goldsmith-Pinkham, Sorkin, and Swift (2020) and Borusyak, Hull, and Jaravel (2022)

Application: Autor, Dorn, and Hanson (2013)

- The paper report this week is Autor, Dorn, and Hanson (2013)

■ Impact of import from China on the local labor markets in the U.S., " China Syndrome"
■ Goldsmith-Pinkham, Sorkin, and Swift (2020) and Borusyak, Hull, and Jaravel (2022) use this paper as an example

- To show how to apply their frameworks
- Please not only read the original paper, but also read the corresponding part in Goldsmith-Pinkham, Sorkin, and Swift (2020) and Borusyak, Hull, and Jaravel (2022)

Conclusion

Conclusion

- Bartik IV is constructed in a shift-share style
- It is widely used in spatial economics for trade and migration
- We illustrate two frameworks to understand it
- When to use which framework really depends on the setting of our research

Conclusion

- Bartik IV is constructed in a shift-share style
- It is widely used in spatial economics for trade and migration
- We illustrate two frameworks to understand it
- When to use which framework really depends on the setting of our research

Conclusion

- Bartik IV is constructed in a shift-share style

■ It is widely used in spatial economics for trade and migration
■ We illustrate two frameworks to understand it

- Goldsmith-Pinkham, Sorkin, and Swift (2020)
- Borusyak, Hull, and Jaravel (2022)
- When to use which framework really depends on the setting of our research

Conclusion

- Bartik IV is constructed in a shift-share style

■ It is widely used in spatial economics for trade and migration
■ We illustrate two frameworks to understand it

- Goldsmith-Pinkham, Sorkin, and Swift (2020)
- Borusyak, Hull, and Jaravel (2022)
- When to use which framework really depends on the setting of our research

Conclusion

- Bartik IV is constructed in a shift-share style

■ It is widely used in spatial economics for trade and migration

- We illustrate two frameworks to understand it
- Goldsmith-Pinkham, Sorkin, and Swift (2020)
- Borusyak, Hull, and Jaravel (2022)
- When to use which framework really depends on the setting of our research

Conclusion

- Bartik IV is constructed in a shift-share style
- It is widely used in spatial economics for trade and migration

■ We illustrate two frameworks to understand it

- Goldsmith-Pinkham, Sorkin, and Swift (2020)
- Borusyak, Hull, and Jaravel (2022)
- When to use which framework really depends on the setting of our research

Conclusion

For Goldsmith-Pinkham, Sorkin, and Swift (2020)

Conclusion

For Goldsmith-Pinkham, Sorkin, and Swift (2020)
■ Bartik IV is equivalent to GMM with shares as instruments

- We should always control for location/time FE, or use change variables
- Bartik IV is similar to a policy exposure design, with initial shares as the exposures
- We can decompose Bartik IV to be weighted averages of single share instruments
- The Rotemberg weights show the importance of each single industry

Conclusion

For Goldsmith-Pinkham, Sorkin, and Swift (2020)

- Bartik IV is equivalent to GMM with shares as instruments
- We should always control for location/time FE, or use change variables
- Bartik IV is similar to a policy exposure design, with initial shares as the exposures

■ We can decompose Bartik IV to be weighted averages of single share instruments

- The Rotemberg weights show the importance of each single industry

Conclusion

For Goldsmith-Pinkham, Sorkin, and Swift (2020)

- Bartik IV is equivalent to GMM with shares as instruments
- We should always control for location/time FE, or use change variables
- Bartik IV is similar to a policy exposure design, with initial shares as the exposures
- We can decompose Bartik IV to be weighted averages of single share instruments
- The Rotemberg weights show the importance of each single industry

Conclusion

For Goldsmith-Pinkham, Sorkin, and Swift (2020)
■ Bartik IV is equivalent to GMM with shares as instruments

- We should always control for location/time FE, or use change variables
- Bartik IV is similar to a policy exposure design, with initial shares as the exposures
- We can decompose Bartik IV to be weighted averages of single share instruments
- The Rotemberg weights show the importance of each single industry

Conclusion

For Goldsmith-Pinkham, Sorkin, and Swift (2020)
■ Bartik IV is equivalent to GMM with shares as instruments

- We should always control for location/time FE, or use change variables
- Bartik IV is similar to a policy exposure design, with initial shares as the exposures

■ We can decompose Bartik IV to be weighted averages of single share instruments
■ The Rotemberg weights show the importance of each single industry

Conclusion

For Borusyak, Hull, and Jaravel (2022)

Conclusion

For Borusyak, Hull, and Jaravel (2022)
■ Bartik IV is equivalent to a shock-level regression with shifts as instruments

- The research design is based on the assumption of a series of randomly assigned shocks
- Be careful about the inference of the std err due to the serial correlation nature of the $D G P \Rightarrow A$ transformation to shock-level regression can avoid this issue

Conclusion

For Borusyak, Hull, and Jaravel (2022)

- Bartik IV is equivalent to a shock-level regression with shifts as instruments
- The research design is based on the assumption of a series of randomly assigned shocks
- Be careful about the inference of the std err due to the serial correlation nature of the $D G P \Rightarrow A$ transformation to shock-level regression can avoid this issue

Conclusion

For Borusyak, Hull, and Jaravel (2022)
■ Bartik IV is equivalent to a shock-level regression with shifts as instruments

- The research design is based on the assumption of a series of randomly assigned shocks
- Be careful about the inference of the std err due to the serial correlation nature of the $D G P \Rightarrow A$ transformation to shock-level regression can avoid this issue

References

Adao, Rodrigo, Michal Kolesár, and Eduardo Morales. 2019. "Shift-share Designs: Theory and Inference." The Quarterly Journal of Economics 134 (4):1949-2010.
Autor, David H, David Dorn, and Gordon H Hanson. 2013. "The China Syndrome: Local Labor Market Effects of Import Competition in the United States." American Economic Review 103 (6):2121-2168.
Borusyak, Kirill, Peter Hull, and Xavier Jaravel. 2022. "Quasi-experimental Shift-share Research Designs." The Review of Economic Studies 89 (1):181-213.
Card, David. 2009. "Immigration and Inequality." American Economic Review 99 (2):1-21.
Goldsmith-Pinkham, Paul, Isaac Sorkin, and Henry Swift. 2020. "Bartik Instruments: What, When, Why, and How." American Economic Review 110 (8):2586-2624.

