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Endogeneity: Motivating Example

Consider the effect of schooling on wage

Assume linear homogeneous (constant) effect

For individual i :

Yi = α + ρsi + ηi (1)

Yi : wage; si : schooling; ηi : unobserved term

If si is randomly assigned ⇒ ρ is ATT/ATE

But si is usually an endogenous choice of i

Selection bias: People attending colleges have higher ability
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Endogeneity: Motivating Example

Assume Ai is ability and we have:

ηi = γAi + νi (2)

Assume that si ⫫ νi , plug (2) to (4), we have:

Yi = α + ρsi + γAi + νi (3)

What to do if Ai is observed? ⇒ Control it

What if Ai is not observed? ⇒ Omitted Variable Bias
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Simple IV: Definition

Let’s focus on the simplest case first:
Single endogenous variable, single instrument, constant treatment effect

Assume that, there is a variable zi , such that

(1) zi ⫫ ηi (Exclusion Restriction)

(2) Cov(si , zi) ≠ 0 (Existence of First Stage)

We call it an ”Instrumental Variable” (IV).
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Simple IV: Identification

Calculating covariance of zi and Yi :

Cov(zi ,Yi) = Cov(zi , α + ρsi + ηi) = ρCov(zi , si)

⇒ ρ =
Cov(zi ,Yi)
Cov(zi , si)

=
Cov(zi ,Yi)/Var(zi)
Cov(zi , si)/Var(zi)

Thus, treatment effect is identified by dividing two correlations.

When IV zi is binary:

ρ =
E[Yi ∣zi = 1] − E[Yi ∣zi = 0]
E[si ∣zi = 1] − E[si ∣zi = 0]
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Simple IV: Wald Estimator

Correlations are regression coefficients (single variable):

si = α + π1zi + ηi (First Stage)

Yi = α + π2zi + ηi (Reduced Form)

ρ =
π2
π1

Estimation of ρ is simple:

ρ̂wald =
π̂
ols
2

π̂ols
1

We call this Wald/IV estimator
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Simple IV: 2SLS

Another way of using IV is Two-Stage Least Squares (2SLS)

Assume that we have the following main and first stage equation:

Yi = X
′
iα + ρsi + ηi (4)

si = X
′
i π10 + π11zi + ξ1i (5)

Xi is a set of control variables.
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Simple IV: 2SLS

Plug (5) into (4):

Yi = α
′
Xi + ρ(X ′

i π10 + π11zi + ξ1i) + ηi

= α
′
Xi + ρ(X ′

i π10 + π11zi) + ξ2i (6)

Because ξ2i = ρξ1i + ηi , we have zi ⊥ ξ2i

(X ′
i π10 + π11zi) is the CEF/regression prediction of si on zi given Xi
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Simple IV: 2SLS

Procedure of 2SLS estimation of ρ:

Step 1: Running s on both z and X to get the predicted value ŝ

ŝi = X
′
i π̂10 + π̂11zi

Step 2: Running Y on predicted value ŝ and Xi

Yi = α
′
Xi + ρŝi + ξ

′
2i
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Simple IV: Some Tips

In 2SLS, you need to control the same Xi in both steps

Never do 2SLS by hand, use packages in Stata
OLS second stage std err is wrong.

Do we need causal interpretation for first stage? No!
You can always run regressions without causal meanings.

But in practice it is better you have a reason to believe that Z affects X

Wald estimator is only available when # of endogenous variables equals # of IVs

When # of endogenous variables equals # of IVs (just-identified)
2SLS estimator is identical to Wald estimator

In general, 2SLS is relatively efficient (best under homosk)
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IV with Heterogeneous Treatment Effect: Settings

In the simple IV case, we consider:
(1) single endogenous variable; (2) single IV; (3) constant treatment effect

Now we relax (3) to have heterogeneous treatment effect

Motivating example: Military service on earning (Angrist and Krueger 1992)
Yi : wage earning; Di : whether served in the army before; zi : draft lottery number
below cutoff (draft eligible)

During the Vietnam War, young men in the U.S. were drafted to the army

A random draft lottery number was assigned to each birthday

Man with a number below the cutoff is likely to be drafted
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IV with Heterogeneous Treatment Effect: Settings

We define two potential outcomes

Yi(d , z): Potential final outcome (wage), given treatment (military service) and
instrument (draft number)

D1i ,D0i : Potential treatment outcome (military service), given instrument (draft
number)

Now we introduce four assumptions needed for LATE Theorem

Assumption 1: Independence

{Yi(D1i , 1),Yi(D0i , 0),D1i ,D0i} ⫫ zi

Instrument is assigned as good as random ⇔ instrument is independent of
potential outcome and potential treatment (agent type)
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IV with Heterogeneous Treatment Effect: Settings

Assumption 2: Exclusion

Yi(d , 0) = Yi(d , 1) ≡ Ydi for d=0,1

Instrument can only affect final outcome through treatment

Example: Draft number affects future wages only by changing military service
experience, but not other channel (education etc)

Assumption 3: Existence of first stage

E[D1i − D0i] ≠ 0
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IV with Heterogeneous Treatment Effect: LATE

Intention-to-treat: E[Yi ∣zi = 1] − E[Yi ∣zi = 0]
Local Average Treatment Effect (LATE)

LATE Theorem 4.4.1 in Angrist and Pischke (2009) MHE

If we have Assumption 1-4, then

E[Yi ∣zi = 1] − E[Yi ∣zi = 0]
E[Di ∣zi = 1] − E[Di ∣zi = 0] = E[Y1i − Y0i ∣D1i > D0i]

IV (Wald) identifies the average treatment effect for the complier group.
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IV with Heterogeneous Treatment Effect: LATE

LATE represents an average TE for a special group: compliers

Monotonicity is important: No room for defiers

If there are defiers, effects from compliers could be contaminated by effects from
defiers

LATE is internally valid

Complier group can be policy relevant: Those whose behaviors CAN be changed
by the policy instrument
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IV with Heterogeneous Treatment Effect: LATE

What are the weaknesses of LATE interpretation?

LATE is not externally valid, since the complier group changes when policy is
changed

When instrument and treatment become multi-valued, interpreting IV in a
traditional way becomes very very hard

Why? The number of types increase exponentially! Much faster than your
available equations

Still remember Pinto (2015)?

We need new weapons for this: IV + Choice Model (next lecture)
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Multiple IV: GMM Framework

In the simple IV case, we consider:
(1) single endogenous variable; (2) single IV; (3) constant treatment effect

We just investigated the case when (3) is relaxed

Now we relax (1) and (2), considering multiple endogenous variables and IV

We can discuss this general question in the GMM framework

All common IV related estimators (Wald, 2SLS...) are special cases of GMM
estimator
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Multiple IV: GMM Definition

Let gi(β) be a known l × 1 function of k × 1 parameter β

Definition: A moment equation model is

E[gi(β)] = 0

In this system we have l known equations and k unknown parameters

Example: Linear regression model is a moment equation model with l = k and
gi(β) = xi(Yi − x

′
iβ)

If l = k , just-identified; if l > k , over-identified; if l < k , under-identified
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Multiple IV: GMM Definition

Given E[gi(β)] = 0, how to use data to estimate β?

Simple and straightforward when l = k (just-identified) ⇒ Using sample means

Method of Moments Estimator (MME):

ḡn =
1
n

n

∑
i=1

gi(β̂) = 0

Example: OLS estimator is also a MME

ḡn =
1
n

n

∑
i=1

xi(Yi − x
′
i β̂) = 0
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Multiple IV: GMM Definition

What if l > k? (over-identified)

Now we have more equations than unknowns

We cannot directly equate sample mean to zero and solve for β

Our target then becomes to minimize the distance between the moment vector
and zero

J(β) = nḡn(β)′Wḡn(β)
β̂gmm = argminβJ(β)

W is some weighting matrix

J measures the square of weighted euclidean distance between ḡn and 0

MME (thus OLS) is a special case of GMM when l = k
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β̂gmm = argminβJ(β)

W is some weighting matrix

J measures the square of weighted euclidean distance between ḡn and 0
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Multiple IV: Linear GMM

Let Xi be the endogenous variables, Zi be the instruments

Instruments are not correlated with the error, so we have the linear moment
equations:

E[gi(β)] = E[Zi(Yi − X
′
i β)] = 0 (7)

Stack over the sample, we have GMM estimator to be:

β̂gmm = argminβ n(Z ′
Y − Z

′
Xβ)′W (Z ′

Y − Z
′
Xβ)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
J(β)
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Multiple IV: Linear GMM

Solve this minimization problem, we have

Theorem 13.1 in Hansen (2022)

For the over-identified linear IV model with l endogenous variables and k instruments

β̂gmm = (X ′
ZWZ

′
X )−1(X ′

ZWZ
′
Y )

GMM is really general

Many estimators are special cases of GMM estimator
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Multiple IV: Linear GMM

When X = Z ,W = I , we have:

β̂gmm = (X ′
XIX

′
X )−1(X ′

XIX
′
Y )

= (X ′
X )−1(X ′

X )−1(X ′
X )Y

= (X ′
X )−1X ′

Y = β̂ols

We have the second line since X = Z , X
′
X is a square matrix

When we do not have endogenous variables, and use identity weighting matrix,
GMM is OLS.
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Multiple IV: Linear GMM

When l = k ,W = I , we have:

β̂gmm = (X ′
ZIZ

′
X )−1(X ′

ZIZ
′
Y )

= (Z ′
X )−1(X ′

Z)−1(X ′
Z)(Z ′

Y )
= (Z ′

X )−1Z ′
Y

We have the second line since l = k, X
′
Z is a square matrix

This is the Wald/IV estimator.
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Multiple IV: Linear GMM

Let Pz = Z(Z ′
Z)−1Z ′

to be the projection matrix

First stage fitted value then becomes X̂ = PzX

P is idempotent: P ⋅ P = P

When Ŵ = (Z ′
Z)−1, we have:

β̂gmm = (X ′
Z(Z ′

Z)−1Z ′
X )−1(X ′

Z(Z ′
Z)−1Z ′

Y )
= (X ′

PzX )−1X ′
PzY

= (X̂ ′
X̂ )−1X̂ ′

Y

This is the 2SLS estimator.
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Multiple IV: Over-identification Test

We can test whether moment conditions hold (IV is valid)

Basic idea: If IV is valid, our calculated distance J should be close enough to zero

Hansen’s test Theorem 13.14 in Hansen (2022)

Under some mild assumptions, as n → ∞,

J = J(β̂gmm)
d
−→ χ

2
l−k

For c satisfying α = 1 − Gl−k(c),P[J > c∣H0] → α so the test ”Reject H0 if J > c”
has asymptotic size α.
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Multiple IV: Over-identification Test

Be careful using this test!

If you want to have a valid IV, you should hope J-statistic to be NOT significant

This is feasible only when you have more instruments than endogenous variables

J-test rejects null /⇒ E(gi) ≠ 0, since this is a specification test
There can be other reasons why the null is rejected, such as non-linearity

E(gi) ≠ 0 /⇒ J-test rejects null

Actual size in finite-sample is too large (too many rejections)
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Oster Bound: Endogeneity without IV

Coming up with a good IV is super hard

Unfortunately, we often cannot find a valid instrument

How to deal with endogeneity without a valid instrument?

We are going to introduce one of the methods: Oster Bound

Oster (2019) Unobservable Selection and Coefficient Stability: Theory and
Evidence
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Oster Bound: Endogeneity without IV

In general, point identification in this case is impossible

This is not a method to help you in point identification/estimation

But to help you bound your results ⇒ Set identification/bound estimation
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Oster Bound: Endogeneity without IV

Point identification means

You can recover the exact point of the parameter from the data
1-1 mapping between data and parameter value
No other parameter values can generate the same data
You cannot find another parameter value that is observational equivalent

Set identification means

You can recover a set of the parameter from the data
No other parameter values outside this identified set can generate the same data
You cannot find another parameter value outside this identified set that is
observational equivalent
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Oster Bound: Endogeneity without IV

The intuition of Oster bound is very simple

We can use observed variables to evaluate how large the omitted bias can be

Relation between treatment and unobservables can be partially recovered from
relation between treatment and observables
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Oster Bound: Endogeneity without IV

If there is large omitted variable bias, inclusion of omitted variables will change
the coefficient estimation a lot

When we additionally include one more control variable:

How stable is the coefficient? (stability)
How much of y is explained by this control? (informative)

If the coefficient estimation is changed only a little, by a strong control
⇒ We are safe
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Oster Bound: Theory

Assume that we are interested in the effect of X on Y

We have two sets of other variables W1,W2, correlated with both X and Y

W1 can be represented by some observed proxies, W2 is unobservable

Consider the following model:

Y = βX +Ψω +W2 + ϵ

W1 = Ψω

Assume that W1 and W2 are orthogonal
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Oster Bound: Theory

Denote δ as the proportional selection relationship:

δ
σ1X

σ2
1

=
σ2X

σ2
2

, where σiX = cov(Wi ,X ), σ2
i = Var(Wi)

δ means the relative degree of W1 and W2’s relation to treatment X

When δ is large, it means the observed control is relatively not important as the
unobserved one

When δ = 1, the unobservale and observable are equally related to the treatment
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Oster Bound: Theory

We further denote β and R-square for three regressions

Short regression: reg Y on X ⇒ β̊, R̊

Intermediate regression: reg Y on X, ω ⇒ β̃, R̃

Full regression: reg Y on X, ω, W2 ⇒ Rmax
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Oster Bound: Theory

There are two important pieces in this issue

δ: relative correlation of observed vs. unobserved variable with X

Rmax : total variation you can explain

Given we know R̊ and R̃ (just do the regs)
We can infer how much variation we explain using observed variables
Thus, knowing Rmax means knowing the portion of variations we can explain by the
additional observed control W1
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Oster Bound: Theory

We have two propositions connecting δ, Rmax and bias:

Proposition 2 in Oster (2019)

Given δ and Rmax , we can calculate the bias and find a debiased estimator. But in
some cases, there will be multiple solutions and we need to implement solution
selection. δ,Rmax → bias, β

Proposition 3 in Oster (2019)

Given Rmax and any value of treatment effect β, we can find a δ to make bias zero.
Rmax , β, bias = 0 → δ
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Oster Bound: Theory

Proposition 3 has an important implication: we can assume the ”true effect”
β = 0 and find the corresponding δ

It means how large δ has to be to erase our result to zero

How important should unobservables be (related to X) to make the true effect zero

If this threshold of δ is large, zero true effect is unlikely to happen
⇒ Our results are robust
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Oster Bound: Theory

Proposition 2 and 3 gives two equations connecting δ, Rmax and bias

They are very complicated

However, if we assume δ = 1, the equation can be reduced to:

β
∗
= β̃ − [β̊ − β̃]Rmax − R̃

R̃ − R̊Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
bias

Proposition 1 in Oster (2019)

When δ = 1, the debiased estimator is asymptotically consistent. β
p
→ β

When we add controls, bias is positively related with coefficient change β̊ − β̃,
negatively related with R-square change R̃ − R̊
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Oster Bound: Implementation

How to implement Oster’s method in practice?

Two methods based on Propositions 2 and 3

Method 1: Assume a value for Rmax and calculate the value of δ for which β = 0

As a rule of thumb, choose Rmax = min{1, 1.3R̃}
1.3 is derived to let 90% of the RCT studies in top journals pass this test
Set β = 0, find the corresponding δ
If δ > 1, we are safe

If unobservables need to be very important to erase our results, we are OK

If a relatively small unobservable can erase our results, it is not robust
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Oster Bound: Implementation

Method 2: Assume a conservative value for Rmax and δ, calculate the debiased
estimation β

∗
, which gives you a bound [β̃, β∗]

As a rule of thumb, choose Rmax = min{1, 1.3R̃}, δ = 1
Calculate a debiased β

∗(Rmax , δ = 1)
A conservative bound of the estimation is [β̃, β∗]

If the interval does not contain zero, we are OK

If the interval contains zero, it is not robust
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Oster Bound: Conclusion

Oster bound is the last weapon you can use when nothing else works

It can also be utilized as a robustness check

But it has some intrinsic disadvantages

The choice of parameters are arbitrary
It can only give you a sense of the robustness of your results

An Application in Economics: Clark et al. (2021)
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Final Conclusion

IV is the main strategy we can use to deal with endogeneity

At least two assumptions: Exclusion restriction, Existence of first stage

In heterogeneity TE, IV estimator gives us LATE

GMM is the general framework for IV

OLS, Wald, and 2SLS are all special cases of GMM estimator
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Final Conclusion

When valid IV is not available, Oster bound can help us

The basic idea relates to the stability of the point estimation when a strong
control is included

It gives you a bounding result

But it is not almighty, since some parameter choices are pretty arbitrary
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