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Staggered DID: Settings

Up until now, we consider a plain vanilla DID setting

Some policy is implemented at time t0 in one set of units (treated group), but not
the other set of units (untreated group)

Let’s go to more general case of TWFE ⇒ Staggered DID

Policy can be rolled out in different places at different time
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Staggered DID: Settings

Assume we have policy implemented at group g level, rolling out in different
periods

Let’s run the same TWFE regression for individual i in group g at time t:

Yigt = γg + λt + δDgt + ϵigt (1)

Dgt = 1 if group g is treated at time t

In homogeneous treatment effect case: δ is TE

In heterogeneous treatment effect case: δ is a weighted sum of ATE in each group
and period

But, is this in general a good estimator? NO!
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TWFE: Issues

De Chaisemartin and d’Haultfoeuille (2020) Two-Way Fixed Effects Estimators with
Heterogeneous Treatment Effects

CD(2020) proposes a main issue of the TWFE when treatment effect is
heterogeneous

TWFE identifies a weighted average TE

But some of the weights can be negative

Thus, the weighted average may be negative even if signs of all comparison
groups are positive

Let’s see why (Please read CD(2020), this is important!)
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CD(2020): Settings

Setup in CD(2020)

Three-level of data: individual i , group g , period t

Ng ,t is the number of observations in cell (g , t), N is the total number of samples

Assume Di ,g ,t is a binary treatment, Yi ,g ,t(0) and Yi ,g ,t(1) are potential outcomes

We have (g,t) cell-level average variables as:

Dg ,t =
1

Ng ,t
∑

i∈(g ,t)
Di ,g ,t , Yg ,t(0) =

1

Ng ,t
∑

i∈(g ,t)
Yi ,g ,t(0)

Yg ,t(1) =
1

Ng ,t
∑

i∈(g ,t)
Yi ,g ,t(1), Yg ,t =

1

Ng ,t
∑

i∈(g ,t)
Yi ,g ,t
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CD(2020): Settings

Assumption 1: For all (g , t), Ng ,t > 0

Assumption 2: For all (g , t), Di ,g ,t = Dg ,t (Sharp Design)
Treatment is identical for everyone in the same group-time cell

Assumption 3: Vectors (Yg ,t(0),Yg ,t(1),Dg ,t)1≤t≤T are mutually independent
No correlation across groups (correlations within group across time is allowed)
Weaker version of iid
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CD(2020): Settings

Assumption 4:
For all (g , t), E(Yg ,t(0) − Yg ,t−1(0)∣Dg ,1, ...,Dg ,T ) = E(Yg ,t(0) − Yg ,t−1(0))

This is called ”Strong exogeneity”.
Treatment cannot be assigned to some group because they experienced a negative
shock
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CD(2020): Settings

In a more general case than staggered DID, exit is also allowed

Some groups can cancel the policy after some periods, then we have
Dg ,t = 1,Dg ,t+1 = 0

Let’s run the TWFE regression:

Yigt = γg + λt + β
fe
Dgt + ϵigt

Assumption 5: For t ≥ 2, E(Yg ,t(0) − Yg ,t−1(0)) does not vary across g
Common trends

Potential outcomes without treatment evolve identically across groups.
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CD(2020): ATT and TWFE Estimator

ATT: δ
TR

= E[Yi ,g ,t(1) − Yi ,g ,t(0)∣Dg ,t = 1]
Cell average TE: ∆g ,t =

1
Ng,t

∑i∈(g ,t)[Yi ,g ,t(1) − Yi ,g ,t(0)]
Thus, we have ATT to be an expected weighted average of cell averages:

δ
TR

= E[ ∑
(g ,t)∶Dg,t=1

Ng ,t

N
∆g ,t] (2)

Let β̂
fe

be the TWFE estimator and β
fe
= E(β̂fe)
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CD(2020): ATT and TWFE Estimator

Let ϵg ,t denote the residual of the regression of Dg ,t on group and period FE

Dg ,t = α + γg + λt + ϵg ,t (3)

Theorem 1 in CD(2020)

If we have Assumption 1-5, then

β
fe
= E[ ∑

(g ,t)∶Dg,t=1

Ng ,t

N
wg ,t∆g ,t]

wg ,t =
ϵg ,t

∑(g ,t)∶Dg,t=1
Ng,t

N
ϵg ,t

The TWFE estimator is a weighted average of cell-level ATE, with wg ,t as weights.
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CD(2020): ATT and TWFE Estimator

How to interpret this weight wg ,t?

You assign more weights to cells (g , t) deviating from the average treatment level

of all cells in group g
of all cells at time t

If everyone in this group, or every one in this year are not treated, but you are
treated, then you are assigned large weight

Seems OK to you? A big issue is negative weight
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CD(2020): An Example

Consider a simple case with 2 groups and 3 periods with equal group size

Group 1 gets treated at periods 3; group 2 gets treated at periods 2 and 3

Let Dg ,. = ∑t
Ng,t

Ng
Dg ,t ,D.,t = ∑g

Ng,t

Nt
Dg ,t ,D.,. = ∑(g ,t)

Ng,t

N
Dg ,t :

ϵg ,t = Dg ,t − Dg ,. − D.,t + D.,. (4)

Thus, we have:

ϵ1,3 = 1 −
1

3
− 1 +

1

2
=

1

6

ϵ2,2 = 1 −
2

3
−

1

2
+

1

2
=

1

3

ϵ2,3 = 1 −
2

3
− 1 +

1

2
= −

1

6

ϵ2,3 < 0!!!
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CD(2020): An Example

In this special case, we have:

β
fe
=

1

2
E[∆1,3] + E[∆2,2] −

1

2
E[∆2,3]

We assign negative weight to ∆2,3

Negative weight can make results weird

If E[∆1,3] = E[∆2,2] = 1,E[∆2,3] = 4, we have:

β
fe
=

1

2
× 1 + 1 −

1

2
× 4 = −

1

2

We have a negative TWFE estimation, when all treatment effects are positive
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CD(2020): Negative Weights

Let’s see in more details why there is negative weight

In this case, we have two switches: Group 1 at period 3, and group 2 at period 2

Thus, we have two DID comparisons

It can be proved that β
fe

is the average of these two:

DID1 = E(Y2,2) − E(Y2,1) − [E(Y1,2) − E(Y1,1)]
DID2 = E(Y1,3) − E(Y1,2) − [E(Y2,3) − E(Y2,2)]

β
fe
=

1

2
(DID1 + DID2)
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CD(2020): Negative Weights

We can show that DID2 = E[∆1,3]− (E[∆2,3]− E[∆2,2]), NOT DID2 = E[∆1,3]
Proof:

DID2 = E(Y1,3) − E(Y1,2) − [E(Y2,3) − E(Y2,2)]
= E(Y1,3(1)) − E(Y1,2(0)) − [E(Y2,3(1)) − E(Y2,2(1))]
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You cannot cancel this in a forbidden comparison!

]

= E[∆1,3] + E(Y1,3(0)) − E(Y1,2(0))
− [E(Y2,3(1)) − E(Y2,3(0)) + E(Y2,3(0)) − E(Y2,2(1))]
= E[∆1,3] − E[∆2,3]
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= E[∆1,3] − (E[∆2,3] − E[∆2,2])
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CD(2020): Negative Weights
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CD(2020): Negative Weights
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CD(2020): Negative Weights

DID2 = E[∆1,3] − (E[∆2,3] − E[∆2,2])
Then, E[∆2,3] enters into β

fe
with a negative weight

What does this equation mean?

It means that this DID comparison, is ATE in group 1 period 3, minus changes in
group 2’s ATE between period 2 and 3

You are using treated cells as the ”control” group!! ⇐ [E(Y2,3) − E(Y2,2)]
For this already treated group, although there is no treatment status change from
period 2 to 3, the outcome change of Y (1) is not comparable to that of Y (0)!
That’s why you may assign negative weights to some cell ATEs
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CD(2020): Negative Weights

Do not use ”continuously treated groups” as ”control groups”

This is called forbidden comparison
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CD(2020): Negative Weights

Homework : Show what is DID1, express it in terms of E[∆g ,t], tell me what is
the difference between the derivation of DID1 and DID2. Why some terms can be
canceled out in the derivation of DID1, but not DID2

This homework can make you have a deeper understanding of why using treated
cells as ”controls” can be dangerous!
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CD(2020): Negative Weights

In general, which kind of cells are more likely to have negative weights?

Let’s go back to the function of weight

Dg ,t = α + γg + λt + ϵg ,t (5)

When will ϵg ,t become negative?

A cell is more likely to have negative weight if

(1) At a period when many groups are treated;
(2) In a group where it is treated for many periods;

This is the opposite of who are assigned larger weight

If everyone in this group, or every one in this year are treated, then you are
assigned negative weight

Just like group 2 in period 3 in this example
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CD(2020): Negative Weights

The intuition is that they are more likely to take both treated cells as ”control”

Many chances for you to do forbidden comparisons in these cells

Specifically, in staggered adoption case, these are very dangerous

Groups adopting treatment/policy earlier
Periods that are very late
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CD(2020): Sensitivity Check

So, what should we do?

Step 1: Check how sensitive your result is to treatment effect heterogeneity

(1) Compute the weights, see whether some of them are negative

(2) By dividing ∣β̂fe∣ by std dev of the weights, you can derive the minimal value of
the std dev of ATE across (g , t) cells under which ATT may have the opposite sign

If there are many negative weights, or
∣β̂fe ∣
sd(w) is small, do not use TWFE

Since TWFE estimator is vulnerable to treatment effect heterogeneity in this case

In practice, you can use twowayfeweights Stata package
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Since TWFE estimator is vulnerable to treatment effect heterogeneity in this case

In practice, you can use twowayfeweights Stata package
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CD(2020): New Estimator

Step 2: If you have many negative weights, or the threshold value of the flipped
sign is small, using a new estimator

CD(2020) constructs a new estimator for TWFE regression, called DIDM

We define a new average treatment effect:

δ
s
= E[ 1

Ns
∑

(i ,g ,t)∶t≥2,Dg,t≠Dg,t−1

[Yi ,g ,t(1) − Yi ,g ,t(0)]]

Ns = ∑(g ,t)∶t≥2,Dg,t≠Dg,t−1
Ng ,t , number of obs changing their treatment status

from t − 1 to t

δ
s
is the ATE of all switching cells

Switching cells include joiners and leavers
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CD(2020): New Estimator

Additional assumptions

Assumption 9: Strong Exogeneity for Y (1) (corresponding to A4)
For all (g , t), E(Yg ,t(1) − Yg ,t−1(1)∣Dg ,1, ...Dg ,T ) = E(Yg ,t(1) − Yg ,t−1(1))
Assumption 10: Common Trends for Y (1) (corresponding to A5)
For t ≥ 2, E(Yg ,t(1) − Yg ,t−1(1)) does not vary across g

These two assumptions ensure one to reconstruct the potential outcomes of
leavers

They are needed only when you have exits

They are not necessary if we have a staggered adoption (no leavers)
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CD(2020): New Estimator

Additional assumptions

Assumption 11: Existence of ”Stable” Groups (existence of control groups)

(i) If there is g such that Dg ,t−1 = 0,Dg ,t = 1, there exists g
′
such that

Dg ′,t−1 = Dg ′,t = 0.

(ii) If there is g such that Dg ,t−1 = 1,Dg ,t = 0, there exists g
′
such that

Dg ′,t−1 = Dg ′,t = 1

Assumption 12: Mean Independence between a group’s outcome and other
groups’ treatment (No spillover)
For all g , t, E(Yg ,t(0)∣D) = E(Yg ,t(0)∣Dg),E(Yg ,t(1)∣D) = E(Yg ,t(1)∣Dg)
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CD(2020): New Estimator

Let’s define the DIDM estimator

Let Nd ,d ′,t = ∑g ∶Dg,t=d ,Dg,t−1=d
′ Ng ,t , that is, number of obs with treatment d at t

and d
′
at t − 1

Let’s define two parts of DID comparisons:

DID+,t = ∑
g ∶Dg,t=1,Dg,t−1=0

Ng ,t

N1,0,t
(Yg ,t − Yg ,t−1) − ∑

g ∶Dg,t=Dg,t−1=0

Ng ,t

N0,0,t
(Yg ,t − Yg ,t−1)

DID−,t = ∑
g ∶Dg,t=Dg,t−1=1

Ng ,t

N1,1,t
(Yg ,t − Yg ,t−1) − ∑

g ∶Dg,t=0,Dg,t−1=1

Ng ,t

N0,1,t
(Yg ,t − Yg ,t−1)

DID+ is DID for joiners vs untreated, DID− is DID for leavers vs treated
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CD(2020): New Estimator

DIDM estimator is defined as

DIDM =

T

∑
t=2

(
N1,0,t

Ns
DID+,t +

N0,1,t

Ns
DID−,t) (6)

Theorem 3 in CD(2020)

If we have Assumption 1,2,4,5, and 9-12 then

E[DIDM] = δ
s

The DIDM estimator is a weighted average of joiners’ and leavers’ treatment effect. It
is an unbiased estimator of δ

s
, that is, the ATE of all switching cells.

26 / 48



CD(2020): New Estimator

DIDM estimator is defined as

DIDM =

T

∑
t=2

(
N1,0,t

Ns
DID+,t +

N0,1,t

Ns
DID−,t) (6)

Theorem 3 in CD(2020)

If we have Assumption 1,2,4,5, and 9-12 then

E[DIDM] = δ
s

The DIDM estimator is a weighted average of joiners’ and leavers’ treatment effect. It
is an unbiased estimator of δ

s
, that is, the ATE of all switching cells.

26 / 48



CD(2020): New Estimator

DIDM is also consistent and asymptotically normal

DIDM is nonparametric, thus, less efficient than TWFE (bias-variance tradeoff)

A placebo test can be constructed, to check the parallel trend assumption

Basic idea: Compare outcome’s evolution from t − 2 to t − 1 for groups which
change their treatments from t − 1 to t (pre-trend test)

Calculate DID+,t and DID−,t by changing Yg ,t to be Yg ,t−1 and Yg ,t−1 to be
Yg ,t−2

You should expect zeros for DID+,t and DID−,t in this placebo

You can use Stata packages fuzzydid or did multiplegt
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CD(2020): Conclusion

Main takeaways of De Chaisemartin and d’Haultfoeuille (2020)

In general, TWFE is not a good estimator in settings with heterogeneous
treatment effect

It may assign negative weights to some group-period ATEs

If you have periods when many groups are treated, or groups treated for many
periods, be careful!

In practice, here are the things you can do

Calculate weights and the threshold value of flipping the sign
If there are negative weights, or the threshold is small, use DIDM rather than TWFE
If use DIDM , implement placebo test to validate the parallel trend assumption

In general, the argument can be applied to any ordered treatment D
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CD(2020): Conclusion

Homework 2: Will plain vanilla DID (like Card and Krueger (1994)) suffer from
the same issue when we use TWFE estimator? Explain your answer in words. (Do
not use math)
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Continuous DID

We only considered discrete treatment variables in previous lectures

What about continuous cases? They are also very common

For example, the effect of US-China trade war tariff on China’s employment
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Continuous DID

In general, we will see that TWFE with continuous treatment is much more
complicated

We need additional assumptions to identify some meaningful causal effects

It also suffers from forbidden comparison issue in staggered DID case

More generally, we will see how to interpret continuous treatment in the potential
outcome framework (usually complicated)
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Callaway et al(2021): Introduction

Callaway, Goodman-Bacon, and Sant’Anna (2021) Difference-in-Differences with a
Continuous Treatment

Define two types of causal effects: level effect (d vs 0) and slope effect (d vs d’)

Consider a vanilla two-period DID case

Discuss assumptions that are needed for the identification of these causal effects
(non-parametrically)
Analyze TWFE estimator: relation to causal effects

Extend results to more than two periods and staggered DID
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Callaway et al(2021): Settings

Two-period, one-time policy treatment

We have two periods, t and t − 1

Units receive a treatment dose Di in t, not t − 1 (Dit−1 = 0)

Potential outcome of individual i at time s receiving d is Yis(d)
Assumption 1: We have i.i.d. samples.

Assumption 2: Full support of D,
D = {0}∪D+.P(D = 0) > 0, dFD(d) > 0,∀d ∈ D+. No units are treated in t − 1.

Assumption 3: No anticipation effect. Yit−1 = Yit−1(0),Yit = Yit(Di)
Assumption 4: Continuous treatment.
D+ = [dL, dU], 0 < dL < dU < ∞,P(D = 0) > 0, fD(d) > 0∀d ∈ D+

33 / 48



Callaway et al(2021): Settings

Two-period, one-time policy treatment

We have two periods, t and t − 1

Units receive a treatment dose Di in t, not t − 1 (Dit−1 = 0)

Potential outcome of individual i at time s receiving d is Yis(d)
Assumption 1: We have i.i.d. samples.

Assumption 2: Full support of D,
D = {0}∪D+.P(D = 0) > 0, dFD(d) > 0,∀d ∈ D+. No units are treated in t − 1.

Assumption 3: No anticipation effect. Yit−1 = Yit−1(0),Yit = Yit(Di)
Assumption 4: Continuous treatment.
D+ = [dL, dU], 0 < dL < dU < ∞,P(D = 0) > 0, fD(d) > 0∀d ∈ D+

33 / 48



Callaway et al(2021): Settings

Two-period, one-time policy treatment

We have two periods, t and t − 1

Units receive a treatment dose Di in t, not t − 1 (Dit−1 = 0)

Potential outcome of individual i at time s receiving d is Yis(d)
Assumption 1: We have i.i.d. samples.

Assumption 2: Full support of D,
D = {0}∪D+.P(D = 0) > 0, dFD(d) > 0,∀d ∈ D+. No units are treated in t − 1.

Assumption 3: No anticipation effect. Yit−1 = Yit−1(0),Yit = Yit(Di)
Assumption 4: Continuous treatment.
D+ = [dL, dU], 0 < dL < dU < ∞,P(D = 0) > 0, fD(d) > 0∀d ∈ D+

33 / 48



Callaway et al(2021): Settings

Two-period, one-time policy treatment

We have two periods, t and t − 1

Units receive a treatment dose Di in t, not t − 1 (Dit−1 = 0)

Potential outcome of individual i at time s receiving d is Yis(d)
Assumption 1: We have i.i.d. samples.

Assumption 2: Full support of D,
D = {0}∪D+.P(D = 0) > 0, dFD(d) > 0,∀d ∈ D+. No units are treated in t − 1.

Assumption 3: No anticipation effect. Yit−1 = Yit−1(0),Yit = Yit(Di)
Assumption 4: Continuous treatment.
D+ = [dL, dU], 0 < dL < dU < ∞,P(D = 0) > 0, fD(d) > 0∀d ∈ D+

33 / 48



Callaway et al(2021): Settings

Two-period, one-time policy treatment

We have two periods, t and t − 1

Units receive a treatment dose Di in t, not t − 1 (Dit−1 = 0)

Potential outcome of individual i at time s receiving d is Yis(d)
Assumption 1: We have i.i.d. samples.

Assumption 2: Full support of D,
D = {0}∪D+.P(D = 0) > 0, dFD(d) > 0,∀d ∈ D+. No units are treated in t − 1.

Assumption 3: No anticipation effect. Yit−1 = Yit−1(0),Yit = Yit(Di)
Assumption 4: Continuous treatment.
D+ = [dL, dU], 0 < dL < dU < ∞,P(D = 0) > 0, fD(d) > 0∀d ∈ D+

33 / 48



Callaway et al(2021): Settings

Two-period, one-time policy treatment

We have two periods, t and t − 1

Units receive a treatment dose Di in t, not t − 1 (Dit−1 = 0)

Potential outcome of individual i at time s receiving d is Yis(d)
Assumption 1: We have i.i.d. samples.

Assumption 2: Full support of D,
D = {0}∪D+.P(D = 0) > 0, dFD(d) > 0,∀d ∈ D+. No units are treated in t − 1.

Assumption 3: No anticipation effect. Yit−1 = Yit−1(0),Yit = Yit(Di)
Assumption 4: Continuous treatment.
D+ = [dL, dU], 0 < dL < dU < ∞,P(D = 0) > 0, fD(d) > 0∀d ∈ D+

33 / 48



Callaway et al(2021): Settings

Two-period, one-time policy treatment

We have two periods, t and t − 1

Units receive a treatment dose Di in t, not t − 1 (Dit−1 = 0)

Potential outcome of individual i at time s receiving d is Yis(d)
Assumption 1: We have i.i.d. samples.

Assumption 2: Full support of D,
D = {0}∪D+.P(D = 0) > 0, dFD(d) > 0,∀d ∈ D+. No units are treated in t − 1.

Assumption 3: No anticipation effect. Yit−1 = Yit−1(0),Yit = Yit(Di)
Assumption 4: Continuous treatment.
D+ = [dL, dU], 0 < dL < dU < ∞,P(D = 0) > 0, fD(d) > 0∀d ∈ D+

33 / 48



Callaway et al(2021): Settings

Two-period, one-time policy treatment

We have two periods, t and t − 1

Units receive a treatment dose Di in t, not t − 1 (Dit−1 = 0)

Potential outcome of individual i at time s receiving d is Yis(d)
Assumption 1: We have i.i.d. samples.

Assumption 2: Full support of D,
D = {0}∪D+.P(D = 0) > 0, dFD(d) > 0,∀d ∈ D+. No units are treated in t − 1.

Assumption 3: No anticipation effect. Yit−1 = Yit−1(0),Yit = Yit(Di)
Assumption 4: Continuous treatment.
D+ = [dL, dU], 0 < dL < dU < ∞,P(D = 0) > 0, fD(d) > 0∀d ∈ D+

33 / 48



Callaway et al(2021): Settings

Two-period, one-time policy treatment

We have two periods, t and t − 1

Units receive a treatment dose Di in t, not t − 1 (Dit−1 = 0)

Potential outcome of individual i at time s receiving d is Yis(d)
Assumption 1: We have i.i.d. samples.

Assumption 2: Full support of D,
D = {0}∪D+.P(D = 0) > 0, dFD(d) > 0,∀d ∈ D+. No units are treated in t − 1.

Assumption 3: No anticipation effect. Yit−1 = Yit−1(0),Yit = Yit(Di)
Assumption 4: Continuous treatment.
D+ = [dL, dU], 0 < dL < dU < ∞,P(D = 0) > 0, fD(d) > 0∀d ∈ D+

33 / 48



Callaway et al(2021): Settings

The definition of causal effect can be much more complicated in continuous
treatment case

Since you are not only comparing d and 0, but also d and d’

1. Level effect: Yt(d) − Yt(0)
Difference between effect of some dose level d and no treatment

2. Slope effect: Y
′
t(d)

The derivative of the potential outcome function. The marginal increase in the
effect when dose is increased.
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Callaway et al(2021): Settings

We define average level effects as:

ATT (a∣b) = E[Yt(a) − Yt(0)∣D = b], ATE(d) = E[Yt(d) − Yt(0)]

ATT (a∣b): Average effect of dose a on units that who actually experience dose b

a is potential treatment, b is real treatment

ATE(d): Average effect of dose a on all units
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Callaway et al(2021): Settings

We define average slope effects as:

ACRT (d∣d) = ∂E[Yt(l)∣D = d]
∂l

»»»»»»l=d , ACR(d) = ∂E[Yt(d)]
∂d

We call them Average Causal Response Function

ACRT (d∣d): Average causal response of a small change in dose d, for the group
of units who actually experience dose d

What is the impact for people who get dose d to get a little bit more dose

ACR(d): Average causal response of a small change in dose d for everyone
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Callaway et al(2021): Non-parametric Identification

Assumption 4: Parallel Trends.
∀d ,E[Yt(0) − Yt−1(0)∣D = d] = E[Yt(0) − Yt−1(0)∣D = 0]
It says that the path of untreated potential outcomes would have been the same
for untreated group and treated group with any dose level

Theorem 1 in Callaway et al(2021)

Under Assumptions 1 to 4, ATT (d∣d) is identified for all d ∈ D:

ATT (d∣d) = E[∆Yt∣D = d] − E[∆Yt∣D = 0]

where ∆Yt = Yt − Yt−1

We can non-parametrically identify ATT (level effect) under parallel trend
assumption in a DID fashion.
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Callaway et al(2021): Non-parametric Identification

Proposition 3 (a) in Callaway et al(2021)

Under Assumptions 1 to 4, generally, ACRT (d∣d) is NOT identified:

∂E[∆Yt∣D = d]
∂d

= ACRT (d∣d) + ∂ATT (d∣l)
∂l

»»»»»»l=dÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Selection bias

Under traditional parallel trend assumption, local comparisons of paths of
outcomes mix ACRT (d∣d) and a selection bias term

ACRT CANNOT be identified with traditional parallel trend assumption in a DID
fashion! Why?
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Callaway et al(2021): Non-parametric Identification

For ACRT (d∣d), you consider a marginal increase in d to d
′

You are comparing d and d
′
, but not d and 0!

You assume parallel trends only for group D = d and group D = 0 if not treated

Whether or not a unit is treated is random

But not necessarily the amount it is treated

You need some exogeneity about the dose assignment
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Callaway et al(2021): Non-parametric Identification

Let’s write the selection bias in the form of local difference

∂ATT (d∣l)
∂l

»»»»»»l=d = E[∆Yt(d)∣D = d
′] − E[∆Yt(d)∣D = d]

= E[Yt(d) − Yt−1(0)∣D = d
′] − E[Yt(d) − Yt−1(0)∣D = d]

When subtracting observed average outcome of D = d from D = d
′
, we have both

causal effect for group D = d , and differences in effects for group D = d and
D = d

′

We need an additional assumption to eliminate this

To assume a parallel trend for group D = d and group D = d
′
if they are assigned

dose d
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Callaway et al(2021): Non-parametric Identification

Assumption 5: Strong Parallel Trends.
∀d ,E[Yt(d) − Yt−1(0)] = E[Yt(d) − Yt−1(0)∣D = d]
It says that for all doses, the average change in outcomes over time across all units
if they had been assigned dose d, is the same as those actually experienced dose d.

It imposes some homogeneity on treatment effect

Proposition 3 (b) in Callaway et al(2021)

Under Assumptions 1 to 3 and 5, ACR(d) and ACRT (d∣d) is identified:

∂E[∆Yt∣D = d]
∂d

= ACRT (d∣d) = ACR(d)

We can non-parametrically identify ACRT under strong parallel trend assumption,
in a DID fashion.
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Callaway et al(2021): Causal Effect and TWFE Estimator

Now we consider the causal interpretation of the traditional TWFE Estimator

Theorem 3 (a) in Callaway et al(2021)

Under Assumptions 1 to 4,

β
twfe

= ∫
dU

dL

w1(l)[ACRT (l∣l) + ∂ATT (l∣h)
∂h

»»»»»»h=l]dl + w0
ATT (dL∣dL)

dL

where, (i)w1(l) ≥ 0,w0 > 0, (ii)∫
dU

dL

w1(l)dl + w0 = 1

The first term is the average causal effect of running from dL to dU
The third term is the causal effect of having the lowest dose (dL vs 0)

The second term is the selection bias (without Assumption 5)
42 / 48
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Callaway et al(2021): Causal Effect and TWFE Estimator

Theorem 3 (b) in Callaway et al(2021)

Under Assumptions 1 to 5,

β
twfe

= ∫
dU

dL

w1(l)[ACR(l)]dl + w0
ATE(dL)

dL

Under strong parallel trend assumption, we eliminate the selection bias

43 / 48
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Callaway et al(2021): Causal Effect and TWFE Estimator

What if we extend it to multiple periods and staggered DID?

Under strong parallel trend assumption, β
twfe

is composed of four comparisons

(i) paths of outcomes for units treated at the same time but with different doses;
(ii) paths of outcomes in early-treated relative to later-treated groups in periods
before later is treated;
(iii) paths of outcomes between later-treated and already treated groups;
(iv) paths of outcomes between early-treated and later-treated groups in their
common post treatment periods relative to their common pre periods.

First two are fine. (iii) and (iv) are forbidden comparison!

Same issue as in CD(2020)
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Callaway et al(2021): Conclusion

In general, it is hard to identify meaningful causal effects using DID fashion in
continuous treatment case

Causal level effects are non-parametrically identified under common parallel trend
assumption

But causal slope effects are non-parametrically identified (in a DID fashion) only
under strong parallel trend assumption, which is not testable by pre-trend

You need not only random assignment of treatment, but also random assignment
of dose amount
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In a simple two period case, TWFE estimator delivers a weighted average of
causal responses only under strong parallel trend assumption

In a staggered DID case, TWFE estimator suffers from negative weight and
forbidden comparison issue even under strong parallel trend assumption
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Callaway et al(2021): Conclusion

Bad News! What should we do?

Using non-parametric method to estimate the effect (Callaway, Goodman-Bacon,
and Sant’Anna (2021) does not give the Stata Package)

Using structural method or theoretical models to help you to interpret your results

Be careful about the strong parallel trend assumption you have to impose
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Final Conclusion

Linear regression is, after all, a parametric method, which imposes strong
functional form assumptions

It is a simple, elegant, and good statistical tool

But when things become more and more complicated (heterogeneous, dynamic,
continuous...), regression may not be capable to capture many data patterns and
give weird results

Fundamental solution 1: Non-parametric tools which gives you enough flexibility
to capture complicated patterns

Fundamental solution 2: Structural model which helps you to regulate and
rationalize the data with economic theories
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