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Introduction: Discrete Choice Model

In previous lectures, we focus on reduced-form approach

In this lecture, we will give a very brief introduction to the Discrete Choice Model

[
[

m It considers problems when y is discrete

m DCM stays in the intersection of reduced-form and structural models
[

It is an important method for both approaches
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Introduction: Discrete Choice Model

m You can learn and understand it in both frameworks
m If you understand it in a reduced-form way

m Another kind of non-linear regression model
m Harder to interpret, but better than LPM to fit when y is binary

m If you understand it in a structural way, it is actually a brand new world

m Each parameter is a structural parameter of the behavior model
m There is underlying welfare implication
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Motivating Example: Female Labor Participation

Still remember the example in our first class?
m Consider a female labor participation problem

m Utility maximization of the female i:

max  Ui(ci, 1= 1;) + ¢ (1)

s.t. Ci = W,'I,'

¢;: consumption; /;: labor supply; €;: unobserved taste shock; w;: wage
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Motivating Example: Female Labor Participation

m Assume that /; is binary (work, not work)
m i =1if U(/=1)2 Ul =0):

Ui(w;,,0) + €1 2 Ui(0,1) + €0 (2)
m Then given w;, we have a threshold value of ¢;; — ¢jg to have i to choose to work:

=1 |if €io — €1 < 6* (3)

" = Ui(w;,0) = U;(0,1)
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Motivating Example: Female Labor Participation

m Assume that shock €j; — €jp has a CDF F,,
m We have the following working probability for i:

*

G(w)=Pr(l=1|w) = J_:o dFejw
= e|w(€*(W)) (4)

m Two empirical research approaches for this question
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Motivating Example: Female Labor Participation

Now, remind yourself:
m What does reduced-form approach do?
m What does structural approach do?

m What are the pros and cons for these two methods?

7/47



Motivating Example: Female Labor Participation

8/47



Motivating Example: Female Labor Participation

m This is a very typical example of Discrete Choice Model (DCM)

8/47



Motivating Example: Female Labor Participation

m This is a very typical example of Discrete Choice Model (DCM)

m Today, we will have a brief introduction to DCM and its important example:
Logit model

8/47



Motivating Example: Female Labor Participation

m This is a very typical example of Discrete Choice Model (DCM)

m Today, we will have a brief introduction to DCM and its important example:
Logit model

m Tips: Logit model is intrinsically structural
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Introduction to DCM: Settings

m DCM describes decision makers' choices among discrete alternatives

m A man chooses whether to smoke or not

m A student chooses how to go to school (Bus/Taxi/Bike)

m A firm chooses whether to enter a local market (Walmart vs. Local store)
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m In continuous (differentiable) choice model, how do we optimize agents’ choices?
m By taking FOC and finding internal solution
m But can we do the same thing for DCM? NO.
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m Assume that we have N decision makers, choosing among a set of J alternatives
1,2,...,J

Decision maker n can get utility Uy; for choosing j

The optimization is: n choose i if and only if

Uni > Unja V./ #1 (5)

Researcher does not observe utility directly

We see their choice results (revealed preference)

m We observe attributes of choices faced by agents x,;, and agents’ personal
characteristics s,

m Thus, we denote V,,; = V/(x,j,s,) as representative utility
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Introduction to DCM: Settings

m Utility of choice j to agent n can be expressed as:
U,-,j = an + €pj (6)

m c; is the part of utility affected by unobserved factors

m Assume that we have pdf f(e,) for e, = [€p1, ...€n;] across the population

Pri = P(Uni > Unjvv.j:'t I)
= P(V,,,'+6,,,' > an+6nj,Vj=/= I)
= P(enj_eni < Vi — an,Vj#: /)

- f Hen — e < Vi = Vig, ¥j # D)F(en)der
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Introduction to DCM: Settings

m This is the probability for an agent with V,; to choose alternative i
Pni = J /(an —€ni < Vpi — an7 Vj# i)f(en)den
€

Different assumptions of the pdf f(e,) gives different models

This expression does not guarantee a closed-form choice probability

u
u
m Type | Extreme Value Distribution gives Logit (Closed-form)
m Normal Distribution gives Probit (Not closed-form)

"

Logit and Probit are specific types of DCM
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Introduction to DCM: Identification

The identification of the DCM is important

It relates to some primitive properties of utility function
It can be concluded in two statements

m 1. Only differences in utility matter
m 2. The scale of utility is arbitrary

Why is this the case?

Let's go back to the fundamental theory of utility
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m Utility function comes from preference

m Assume that we have goods set X, a preference relation % defined on X,
satisfying
m (1)Completeness: ¥x,y € X, we have x x y or y = x (or both)
m (2)Transitivity: Vx,y,z€ X, if xx y,y z z, then x x z

m We call it a "rational” preference

Definition 1.B.2 in MWG

A function v : X — R is a utility function representing preference x if Vx,y € X,
xzy e u(x)=u(y)

m There exists a utility function = Preference is rational

15/47
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Introduction to DCM: Identification

A utility function assigns a numerical value to each element in X in accordance
with the individual's preferences

Thus, utility is a representation of preference!

Preference is ordinal = Utility is ordinal

If a rational preference can be represented by u, then it can be represented by any
strictly increasing transformation of it

m Forinstance, u+ 1, u+ k, u*x?2, ku......

16 /47
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Introduction to DCM: Identification

1. Only differences in utility matter
2. The scale of utility is arbitrary
Let's use an example to reveal these two statements

Assume that you can go to school either by bus (b) or by car (c)

T; is the speed of choice j, k; is choice amenity

U.
Up

aT. + k. + €.
aTb+kb+eb
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1. Only differences in utility matter

m Take difference, we have:
Uc - Ub = a(Tc - Tb) + (kc - kb) + (EC - Eb)

m Only (k. — kp) can be identified, but not k. and k;, separately
m System u; and u; + 1 are observational equivalent

m | don't care it is uj — uj or u; +1— (uj +1)

m Thus, you cannot give each alternative a constant

m What to do in practice: Normalize the utility of one of the alternatives to be zero
(Implicitly done by running logit/probit regressions)
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Introduction to DCM: Identification

1. Only differences in utility matter

m In addition, not all differences matter
m Assume that you include some personal characteristics Y, in the utility
U =aT.+BY,+ 7Y, T + €nc
Unb = aTb + Byn + PYYnTb + €np
Unp = Upc = a(Tb - TC) + 7Yn(Tb - Tc) + (Enb - 6nc)

Y, is canceled out, only ~ is identified, but not 8

Differences in personal characteristics does not matter

[
[
m We are comparing alternatives for each person, not across people
m It matters only if it interacts with choice characteristics

[

Don't add personal-level variable without interaction with choice-level variable
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Unc =aTc+ BYy + €nc
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m Similarly, u; and u; * 2 are observational equivalent

m | don't care it is uj — uj or 2 % (u; — uj)
m Assume that we have the following model 1

Unc =aTc+ BYy + €nc
Up =aTp+8Y,+€np
Unb = Une = a(Tp = Tc) + (€nb — €nc)
m And the following model 2
2Upe = 02T+ 28Y,, + 2€pc
2Upp = 02Ty + 2B8Y, + 2¢pp
2Upp = 2Upe = a2(Tp = T¢) + 2(€np — €nc)

m They are observational equivalent
20/ 47
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Introduction to DCM: Identification

2. The scale of utility is arbitrary
m Thus, we need to normalize the scale
m What to do: normalize the variance of the error
m In Logit, this is automatically done: T1EV error has variance of %2
m In Probit, this is automatically done: Standard Normal error has variance of 1
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Introduction to Logit Model: Settings

m Assume that €, is i.i.d. Type One Extreme Value (T1EV)
PDF: f(ey) =€ e
CDF: Flen) =€
m Since error terms are independent, we have:
Fenty s €ny) = €21t "

m Then we call this DCM a Logit model

22 /47
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Introduction to Logit Model: Choice Probability

m Let's derive the choice probability of Logit model
Ppi = P(Uni > Unjavj * i)

= J I(an —€ni < Vi — vnja v+ i)f(en)den

m It turns out that we can write the (multinomial) choice probability as:

e Vni

Zj eV
m Usually, we have to normalize one of the choices (let's say, choice jy) to have a
utility of zero:

Pni = (7)

e Vni

Pri= ——=——
V.,
1+ Zj#jo eVni

(8)
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m Thus, in a binary choice case, we have:

e an

P,=—"
M 1t eV
m This normalized choice is usually some baseline choice or outside option

m For instance, in an education choice model, we have choices:
Go to PKU, Go to Fudan, Go to SUFE, Not go to school

m We normalize not go to school to have utility of zero
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Introduction to Logit Model: Choice Probability

m Homework: Derive the choice probability equation (7). The answer is in Train's
book, Chapter 3.
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m What does this choice probability mean?
evni
Pni = SINZ
Zj €

m Choice probability of i, is the proportion of i's exponential choice value, over the
total exponential choice value
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Introduction to Logit Model: Choice Probability

m What does this choice probability mean?
Vni

e
je

m Choice probability of i, is the proportion of i's exponential choice value, over the
total exponential choice value

m Compatible with choice probability definition: 0 < P,; <1, Y . P,; =1 (Not like
LPM)
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Introduction to Logit Model: Choice Probability

m The relation of probability with representative utility is sigmoid (S-shaped)

Pm‘

Vai

m Marginal effects of V,; on P,; increase first and then decrease

m If you use a linear fit, which part do you fit the best?
27 /47
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m An important property: Independence from Irrelevant Alternatives (IIA)
m IlIA: For any two alternatives i, k, the ratio of the logit probability is
Vni Vn'
P, €"lYje”
Pok — eVox/ ZjeV"f
Vni
€ Vni_vnk
= v =e
e nk
m The ratio has nothing to do with other alternatives
m Prob ratio between any pair of choices depends only on their own choice values
m Add a new choice, delete another choice, will not change the ratio
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m A manifestation of |IA is proportionate shifting

m A change in an attribute z of choice j, will change probabilities of all other
choices by the same proportion

m With linear utility, the elasticity of choice prob i on changes in z of choice j is

_ oP,; i

eni aznj Pni

= _Bzzannjv Vi

m It is only related to j, same for any i
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Introduction to Logit Model: IIA

Is 1A a good property?
Sometimes yes, sometimes no
It can save computational resources when the number of choices is large

But it is also limited: Red bus-Blue bus problem

We will introduce more flexible models soon

30/47
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Introduction to Logit Model: Derivatives and Marginal Effect

m The derivative of choice probability on its own attribute is:
0Py OV
82,,,- - 82,,,-

m Parameter is not marginal effect: % * %

Pni(]-_'Dni) (10)

IV,
0z,

m Derivative is non-linear, largest when P,; = (1 - P,;) =0.5

m Even if V is linear, you cannot interpret 5 = as marginal effect of z on P
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Introduction to Logit Model: Derivatives and Marginal Effect

m Homework 2: Derive equation 10. The answer is in Train's book, Chapter 3.
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Introduction to Logit Model: Consumer Surplus

We are usually interested in the overall welfare of a consumer
What is the impact of some policy changing some choices for a consumer?

In Logit model, we have a closed-form solution for expected utility:

J
E(U,) = E[maxj(Vpj + €nj)] = In(z ev"j) +C
j=1

C is a constant depending on the normalization
The expected utility is the log sum of the exponential values of all choices

m The consumer surplus (WTP) is just:
1

_a—n

E(CSp) E(Up)

«, is the marginal utility of dollar income
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Introduction to Logit Model: Consumer Surplus

m Therefore, there are two important closed-form formula we can get in Logit
m A closed-form choice probability:

eVni
Poi = oo
Zje n

m A closed-form expected (ex-ante) utility value of the choice set:
E(U,) = E[man(an + 6nj)] = /n(ZJLl ean) + C

m They are very useful tricks in structural research
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Nested Logit

m In the previous case, we assume that alternatives are at the same level
m What if they have a hierarchy structure?

m Now let’s consider a more general model called nested logit
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Motivating Example: Blue Bus vs Red Bus

m As we have shown, Logit has a property of IIA

m Given two options A and B, changes of the third option would not change the
relative probability of A and B

m In some situations, this property is not plausible
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Assume that we have two choices
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1
® Pgg=Pr=3
m One day, the bus company decides to introduce some buses with a new color, red
m Now we have blue bus, red bus, taxi
[
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Assume that we have two choices
Blue Bus vs. Taxi

Pgs = Pr =13

One day, the bus company decides to introduce some buses with a new color, red

n

n

m Now we have blue bus, red bus, taxi

m Red/blue bus is identical besides their color = Prg = Pgg
n

Due to lIA, we have: Prg = Pgg = Pr =3
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Motivating Example: Blue Bus vs Red Bus

Assume that we have two choices
Blue Bus vs. Taxi

Pgs = Pr =13

One day, the bus company decides to introduce some buses with a new color, red
Now we have blue bus, red bus, taxi

Red/blue bus is identical besides their color = Pgrg = Pgg

Due to lIA, we have: Prg = Pgg = Pr =3
You increase the probability of choosing bus by basically doing nothing

37/47
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Nested Logit: Setting

m To solve the Blue/Red bus issue, we introduce an extension of Logit model:
Nested Logit Model

m We allow for correlations over some of the options

m We have utility of choice j to agent n can be expressed as:
Unj = an + €pj (11)

m In nested logit, we have € = (€1, ..., €,) are jointly distributed as a generalized
extreme value (GEV)

38 /47
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Let the choice set be partitioned into K subsets By, ..., Bk called nests
CDF of € = (€p1, ..., €ny) is:

K cnj
Fe)=exp(-y () e ™)™)

k=1 jeB,

Marginal distribution of each ¢,; is univariate T1IEV
Any two options within the same nest, have correlated ¢
Any two options in the different nests, have uncorrelated ¢

Ak measure of degree of independence

Higher Ay, less correlation of choices within the same nest
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Nested Logit: Setting

m Homework 3: What does it mean when you have Ay = 1, Vk? What is the model
now? Why?
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Nested Logit: Choice Probability

m We can show that the choice probability of nested logit is:

eVni/)\k(ZjeB eVni/Ak ))\k_l
Pni = J (12)
Y 1 (L jep e MM

m We have () cp, e\/”f/’\k)’\"_1 in the numerator (All choices in the same nest)

m Given two alternatives i € k and m € /, we have the probability ratio as:

p. evnj//\k(Z'eB ean/)\k))\k_l
ni J €Dy

Pom eVl N (Y g eVl MM
!

41/47



Nested Logit: IIN

42 /47



Nested Logit: IIN

m If Kk =/, we have IlIA for two choices in the same nest

Vai [ A
P e Ak

an B evnm/)‘l

42 /47



Nested Logit: IIN

m If Kk =/, we have IlIA for two choices in the same nest

Vai [ A
P e Ak

an B evnm/)‘l

m If kK £/, we do not have IIA for two choices in different nests

42 /47



Nested Logit: IIN

m If Kk =/, we have IlIA for two choices in the same nest

Vai [ A
P e Ak

an B eVnm/)‘I

m If kK £/, we do not have IIA for two choices in different nests

m Relative probability of i, m is related to other choices in their own nests k and /

42/ 47



Nested Logit: IIN

m If Kk =/, we have IlIA for two choices in the same nest
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If kK # /1, we do not have IlIA for two choices in different nests
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Nested Logit: IIN

m If Kk =/, we have IlIA for two choices in the same nest

Vai [ A
P e Ak

an B eVnm/)‘I

m If kK # /, we do not have IIA for two choices in different nests
m Relative probability of i, m is related to other choices in their own nests k and /
m But not choices in other nests
[

We call it "Independence from Irrelevant Nests” (IIN)
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Auto Transit

Auto Carpool Bus Rail
alone

Figure 4.1. Tree diagram for mode choice.
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Nested Logit: An Example

m Auto=(Auto alone, Carpool), Transit=(Bus, Rail)

Auto Transit

Auto Carpool Bus Rail
alone

Figure 4.1. Tree diagram for mode choice.
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Logit or LPM?

m An important practical question is, when to use Logit? When to use linear
probability model (LPM)?
m Let's first list pros and cons
m For Logit: non-linear fitting with functional form assumption
m Coefficients are "structural” and primitive = Utility, Production...
m But coefficients are neither marginal effects nor weighted treatment effects
m Computationally intensive: especially MLE for high-dimensional dummies
m For LPM: linear fitting, more an approximation
m Coefficients are marginal effects, very easy to interpret
m But will predict probability > 1 or < 0
m Computationally simple: OLS regression
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Logit or LPM?

Here are some personal views
m If you do care about the primitive parameter = Logit

m If you are interested in extrapolating your prediction (predict y for x with few
samples nearby) = Logit

m If you have x distributed pretty uniformly over the range, while want to predict y
for very small or very large x = Logit

m Otherwise, you can choose LPM

45 /47



Conclusion: Main Takeaways

46 / 47



Conclusion: Main Takeaways

Main Takeaways

46 / 47



Conclusion: Main Takeaways

Main Takeaways

m Logit is intrinsically a structural approach, whose parameters have structural
meaning

46 / 47



Conclusion: Main Takeaways

Main Takeaways

m Logit is intrinsically a structural approach, whose parameters have structural
meaning

m Logit is a special kind of DCM when the error is T1IEV distributed

46 / 47



Conclusion: Main Takeaways

Main Takeaways

m Logit is intrinsically a structural approach, whose parameters have structural
meaning

m Logit is a special kind of DCM when the error is T1IEV distributed

m Logit is convenient since it has closed-form choice probability and expected utility

46 / 47



Conclusion: Main Takeaways

Main Takeaways

m Logit is intrinsically a structural approach, whose parameters have structural
meaning

m Logit is a special kind of DCM when the error is T1IEV distributed
m Logit is convenient since it has closed-form choice probability and expected utility

m Logit has a property of lIA, that the relative probability of two choices is not
affected by the third one

46 / 47



Conclusion: Main Takeaways

Main Takeaways

Logit is intrinsically a structural approach, whose parameters have structural
meaning

Logit is a special kind of DCM when the error is TIEV distributed

Logit is convenient since it has closed-form choice probability and expected utility

Logit has a property of IlIA, that the relative probability of two choices is not
affected by the third one

The interpretation of Logit (or in general, non-linear model) is not as
straightforward as Linear probability model
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Conclusion: Main Takeaways

Nested Logit is a more general model than Logit

We assume GEV: choices within the same nest have correlated e

n
n
m |IA for two choices within the same nest but not across different nests
m For two choices across different nests, we have |IN

n

We will further discuss the endogeneity issue in DCM in the next lecture
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