Frontier Topics in Empirical Economics: Week 6 IV beyond LATE

Zibin Huang ${ }^{1}$
${ }^{1}$ College of Business, Shanghai University of Finance and Economics

November 30, 2023

IV beyond LATE: Limitation of LATE

IV beyond LATE: Limitation of LATE

■ We have introduced LATE interpretation of IV

- This is the most popular way to think of IV under heterogeneous treatment effect

■ It is elegant, policy-relevant, but also limited (Heckman and Vytlacil, 2007a,b)

- Complier group is policy-specific, environment-specific
- When environment changes, complier group changes

IV beyond LATE: Limitation of LATE

- We have introduced LATE interpretation of IV
- This is the most popular way to think of IV under heterogeneous treatment effect
- It is elegant, policy-relevant, but also limited (Heckman and Vytlacil, 2007a,b)
- Complier group is policy-specific, environment-specific
- When environment changes, complier groun changes

IV beyond LATE: Limitation of LATE

- We have introduced LATE interpretation of IV
- This is the most popular way to think of IV under heterogeneous treatment effect

■ It is elegant, policy-relevant, but also limited (Heckman and Vytlacil, 2007a,b)

- It relies on binary treatment and binary IV
- It is internally valid, but not externally valid
- Complier group is policy-specific, environment-specific
- When environment changes, complier group changes

IV beyond LATE: Limitation of LATE

■ We have introduced LATE interpretation of IV

- This is the most popular way to think of IV under heterogeneous treatment effect

■ It is elegant, policy-relevant, but also limited (Heckman and Vytlacil, 2007a,b)

- It relies on binary treatment and binary IV
- It is internally valid, but not externally valid
- Complier group is policy-specific, environment-specific
- When environment changes complier group changes

IV beyond LATE: Limitation of LATE

■ We have introduced LATE interpretation of IV

- This is the most popular way to think of IV under heterogeneous treatment effect

■ It is elegant, policy-relevant, but also limited (Heckman and Vytlacil, 2007a,b)

- It relies on binary treatment and binary IV
- It is internally valid, but not externally valid
- Complier group is policy-specific, environment-specific

■ When environment changes, complier group changes

IV beyond LATE: Limitation of LATE

■ We have introduced LATE interpretation of IV

- This is the most popular way to think of IV under heterogeneous treatment effect

■ It is elegant, policy-relevant, but also limited (Heckman and Vytlacil, 2007a,b)

- It relies on binary treatment and binary IV
- It is internally valid, but not externally valid
- Complier group is policy-specific, environment-specific
- When environment changes, complier group changes

IV beyond LATE: Limitation of LATE

■ We have introduced LATE interpretation of IV

- This is the most popular way to think of IV under heterogeneous treatment effect

■ It is elegant, policy-relevant, but also limited (Heckman and Vytlacil, 2007a,b)

- It relies on binary treatment and binary IV
- It is internally valid, but not externally valid
- Complier group is policy-specific, environment-specific

■ When environment changes, complier group changes

IV beyond LATE: Limitation of LATE

IV beyond LATE: Limitation of LATE

- In this lecture, we are going to do two things
. First, we relax the assumption of binary treatment, single and binary IV
■ To generalize LATE interpretation in its original framework
- Second, we introduce a more general framework with better external validity: Marginal Treatment Effect (MTE)
- We are going to see how choice model can be incorporated into IV

IV beyond LATE: Limitation of LATE

- In this lecture, we are going to do two things
- First, we relax the assumption of binary treatment, single and binary IV
- To generalize LATE interpretation in its original framework
- Second, we introduce a more general framework with better external validity: Marginal Treatment Effect (MTE)
- We are going to see how choice model can be incorporated into IV

IV beyond LATE: Limitation of LATE

- In this lecture, we are going to do two things
- First, we relax the assumption of binary treatment, single and binary IV

■ To generalize LATE interpretation in its original framework

- Second, we introduce a more general framework with better external validity: Marginal Treatment Effect (MTE)
- We are going to see how choice model can be incorporated into IV

IV beyond LATE: Limitation of LATE

- In this lecture, we are going to do two things
- First, we relax the assumption of binary treatment, single and binary IV
- To generalize LATE interpretation in its original framework
- Second, we introduce a more general framework with better external validity: Marginal Treatment Effect (MTE)
- We are going to see how choice model can be incorporated into IV

IV beyond LATE: Limitation of LATE

- In this lecture, we are going to do two things
- First, we relax the assumption of binary treatment, single and binary IV
- To generalize LATE interpretation in its original framework
- Second, we introduce a more general framework with better external validity: Marginal Treatment Effect (MTE)
■ We are going to see how choice model can be incorporated into IV

IV beyond LATE: Choice Model and IV

IV beyond LATE: Choice Model and IV

■ Choice model is intrinsically nested in IV

- When you consider always-taker, complier, never-taker
- You are thinking about these people's choices under different policy shocks
- This choice structure is not fully utilized in pure design-based approach
- It can definitely help you when data is not enough to identify the effect

■ The whole point of this lecture is to discuss how to use choice model and economic theory to regularize IV

- An interaction between design-based approach and structural approach

IV beyond LATE: Choice Model and IV

■ Choice model is intrinsically nested in IV
■ When you consider always-taker, complier, never-taker

- You are thinking about these people's choices under different policy shocks
- This choice structure is not fully utilized in pure design-based approach
- It can definitely help you when data is not enough to identify the effect
- The whole point of this lecture is to discuss how to use choice model and economic theory to regularize IV
- An interaction between design-based approach and structural approach

IV beyond LATE: Choice Model and IV

- Choice model is intrinsically nested in IV

■ When you consider always-taker, complier, never-taker
■ You are thinking about these people's choices under different policy shocks

- This choice structure is not fully utilized in pure design-based approach
- It can definitely help you when data is not enough to identify the effect

■ The whole point of this lecture is to discuss how to use choice model and economic theory to regularize IV

- An interaction between design-based approach and structural approach

IV beyond LATE: Choice Model and IV

- Choice model is intrinsically nested in IV
- When you consider always-taker, complier, never-taker

■ You are thinking about these people's choices under different policy shocks
■ This choice structure is not fully utilized in pure design-based approach

- It can definitely help you when data is not enough to identify the effect

■ The whole point of this lecture is to discuss how to use choice model and economic theory to regularize IV

- An interaction between design-based approach and structural approach

IV beyond LATE: Choice Model and IV

■ Choice model is intrinsically nested in IV

- When you consider always-taker, complier, never-taker
- You are thinking about these people's choices under different policy shocks
- This choice structure is not fully utilized in pure design-based approach
- It can definitely help you when data is not enough to identify the effect
- The whole point of this lecture is to discuss how to use choice model and economic theory to regularize IV
= An interaction between design-based approach and structural approach

IV beyond LATE: Choice Model and IV

■ Choice model is intrinsically nested in IV

- When you consider always-taker, complier, never-taker

■ You are thinking about these people's choices under different policy shocks

- This choice structure is not fully utilized in pure design-based approach
- It can definitely help you when data is not enough to identify the effect
- The whole point of this lecture is to discuss how to use choice model and economic theory to regularize IV
- An interaction between design-based approach and structural approach

IV beyond LATE: Choice Model and IV

■ Choice model is intrinsically nested in IV
■ When you consider always-taker, complier, never-taker

- You are thinking about these people's choices under different policy shocks
- This choice structure is not fully utilized in pure design-based approach
- It can definitely help you when data is not enough to identify the effect
- The whole point of this lecture is to discuss how to use choice model and economic theory to regularize IV
- An interaction between design-based approach and structural approach

IV beyond LATE: Choice Model and IV

IV beyond LATE: Choice Model and IV

■ You have already used it in LATE Theorem: Monotonicity

- The idea of monotonicity comes from assuming treatment is a normal good
- If the agent chooses something when the price is higher $(D(z=0)=1)$
- Then he/she will definitely choose it when the price is lower $(D(z=1)=1)$

IV beyond LATE: Choice Model and IV

■ You have already used it in LATE Theorem: Monotonicity

- The idea of monotonicity comes from assuming treatment is a normal good
- If the agent chooses something when the price is higher $(D(z=0)=1)$
- Then he/she will definitely choose it when the price is lower $(D(z=1)=1)$

IV beyond LATE: Choice Model and IV

■ You have already used it in LATE Theorem: Monotonicity

- The idea of monotonicity comes from assuming treatment is a normal good
- If the agent chooses something when the price is higher $(D(z=0)=1)$
- Then he/she will definitely choose it when the price is $\operatorname{lower}(D(z=1)=1)$

IV beyond LATE: Choice Model and IV

■ You have already used it in LATE Theorem: Monotonicity

- The idea of monotonicity comes from assuming treatment is a normal good
- If the agent chooses something when the price is higher $(D(z=0)=1)$
- Then he/she will definitely choose it when the price is lower $(D(z=1)=1)$

Generalization of LATE: Multiple IV

Generalization of LATE: Multiple IV

- In LATE theorem, we assume that both IV and treatment are single and binary
- Then it gives you $2 \times 2=4$ types of people (A, C, N, D)
- By assuming monotonicity, we eliminate D

- We have four equations (final nodes)
- LATE can be inverted from expectation functions from the four final nodes
- It can be identified by the IV estimator

Generalization of LATE: Multiple IV

■ In LATE theorem, we assume that both IV and treatment are single and binary

- Then it gives you $2 \times 2=4$ types of people ($\mathrm{A}, \mathrm{C}, \mathrm{N}, \mathrm{D}$)
- By assuming monotonicity, we eliminate D

- We have four equations (final nodes)
- LATE can be inverted from expectation functions from the four final nodes
- It can be identified by the IV estimator

Generalization of LATE: Multiple IV

- In LATE theorem, we assume that both IV and treatment are single and binary
- Then it gives you $2 \times 2=4$ types of people ($\mathrm{A}, \mathrm{C}, \mathrm{N}, \mathrm{D}$)
- By assuming monotonicity, we eliminate D

- We have four equations (final nodes)
- LATE can be inverted from expectation functions from the four final nodes
- It can be identified by the IV estimator

Generalization of LATE: Multiple IV

- In LATE theorem, we assume that both IV and treatment are single and binary
- Then it gives you $2 \times 2=4$ types of people ($\mathrm{A}, \mathrm{C}, \mathrm{N}, \mathrm{D}$)
- By assuming monotonicity, we eliminate D

- We have four equations (final nodes)
- LATE can be inverted from expectation functions from the four final nodes
- It can be identified by the IV estimator

Generalization of LATE: Multiple IV

■ In LATE theorem, we assume that both IV and treatment are single and binary

- Then it gives you $2 \times 2=4$ types of people ($\mathrm{A}, \mathrm{C}, \mathrm{N}, \mathrm{D}$)
- By assuming monotonicity, we eliminate D

- We have four equations (final nodes)
- LATE can be inverted from expectation functions from the four final nodes
- It can be identified by the IV estimator

Generalization of LATE: Multiple IV

■ In LATE theorem, we assume that both IV and treatment are single and binary

- Then it gives you $2 \times 2=4$ types of people ($\mathrm{A}, \mathrm{C}, \mathrm{N}, \mathrm{D}$)
- By assuming monotonicity, we eliminate D

- We have four equations (final nodes)
- LATE can be inverted from expectation functions from the four final nodes
- It can be identified by the IV estimator

Generalization of LATE: Multiple IV

Generalization of LATE: Multiple IV

■ What if IV and treatment are multiple or multivalued?

- It will be a complicated weighted average of different TEs for different types (groups)

Generalization of LATE: Multiple IV

■ What if IV and treatment are multiple or multivalued?

- It will be a complicated weighted average of different TEs for different types (groups)

Generalization of LATE: Multiple IV

Generalization of LATE: Multiple IV

■ First, consider we have multiple binary IV and binary treatment

- This is relatively simple
- We run regressions taking z_{1}, z_{2} as instruments (not z)
- Assuming monotonicity for both z_{1} and z_{2}
- The corresponding IV estimator can be derived as

$$
\rho_{2 S L S}=\psi L A T E_{1}+(1-\psi) L A T E_{2}
$$

- $L A T E_{1}, L A T E_{2}$ are LATEs for instrument z_{1} and z_{2}

Generalization of LATE: Multiple IV

■ First, consider we have multiple binary IV and binary treatment

- This is relatively simple
- We run regressions taking z_{1}, z_{2} as instruments (not z)
- Assuming monotonicity for both z_{1} and z_{2}
- The corresponding IV estimator can be derived as

$$
\rho_{2 S L S}=\psi L A T E_{1}+(1-\psi) L A T E_{2}
$$

- LATE $_{1}$, LATE $_{2}$ are LATEs for instrument z_{1} and z_{2}

Generalization of LATE: Multiple IV

■ First, consider we have multiple binary IV and binary treatment

- This is relatively simple

■ We run regressions taking z_{1}, z_{2} as instruments (not z)

- Assuming monotonicity for both z_{1} and z_{2}
- The corresponding IV estimator can be derived as:

$$
\rho_{2 S L S}=\psi L A T E_{1}+(1-\psi) L A T E_{2}
$$

- $L A T E_{1}, L A T E_{2}$ are LATEs for instrument z_{1} and z_{2}

Generalization of LATE: Multiple IV

■ First, consider we have multiple binary IV and binary treatment

- This is relatively simple

■ We run regressions taking z_{1}, z_{2} as instruments (not z)

- Assuming monotonicity for both z_{1} and z_{2}
- The corresponding IV estimator can be derived as:

$$
\rho_{2 S L S}=\psi L A T E_{1}+(1-\psi) L A T E_{2}
$$

- LATE $_{1}$, LATE $_{2}$ are LATEs for instrument z_{1} and z_{2}

Generalization of LATE: Multiple IV

■ First, consider we have multiple binary IV and binary treatment

- This is relatively simple
- We run regressions taking z_{1}, z_{2} as instruments (not z)
- Assuming monotonicity for both z_{1} and z_{2}
- The corresponding IV estimator can be derived as:

$$
\rho_{2 S L S}=\psi L A T E_{1}+(1-\psi) L A T E_{2}
$$

- LATE $_{1}$, LATE $_{2}$ are LATEs for instrument z_{1} and z_{2}

Generalization of LATE: Multiple IV

■ First, consider we have multiple binary IV and binary treatment

- This is relatively simple
- We run regressions taking z_{1}, z_{2} as instruments (not z)
- Assuming monotonicity for both z_{1} and z_{2}
- The corresponding IV estimator can be derived as:

$$
\rho_{2 S L S}=\psi L A T E_{1}+(1-\psi) L A T E_{2}
$$

- LATE_{1}, LATE $_{2}$ are LATEs for instrument z_{1} and z_{2}

Generalization of LATE: Multivalued Treatment

Generalization of LATE: Multivalued Treatment

■ Now we consider multivalued treatment and binary IV: Average Causal Response (ACR)

- Assume that we have treatment $s \in\{0,1,2, \ldots, \bar{s}\}$
- For example, IV is the implementation of a compulsory education law
- Treatment is the education level, which takes multiple values
- We have the following three assumptions:
- ACR3 implicitly requires us to have an "ordered" list of values for treatment

Generalization of LATE: Multivalued Treatment

■ Now we consider multivalued treatment and binary IV: Average Causal Response (ACR)

- Assume that we have treatment $s \in\{0,1,2, \ldots, \bar{s}\}$
- For example, IV is the implementation of a compulsory education law
- Treatment is the education level, which takes multiple values
- We have the following three assumptions:
- ACR3 implicitly requires us to have an "ordered" list of values for treatment

Generalization of LATE: Multivalued Treatment

■ Now we consider multivalued treatment and binary IV: Average Causal Response (ACR)

- Assume that we have treatment $s \in\{0,1,2, \ldots, \bar{s}\}$
- For example, IV is the implementation of a compulsory education law
- Treatment is the education level, which takes multiple values
- We have the following three assumptions:
- ACR3 implicitly requires us to have an "ordered" list of values for treatment

Generalization of LATE: Multivalued Treatment

■ Now we consider multivalued treatment and binary IV: Average Causal Response (ACR)

- Assume that we have treatment $s \in\{0,1,2, \ldots, \bar{s}\}$
- For example, IV is the implementation of a compulsory education law

■ Treatment is the education level, which takes multiple values

- We have the following three assumptions:
- ACR3 implicitly requires us to have an "ordered" list of values for treatment

Generalization of LATE: Multivalued Treatment

■ Now we consider multivalued treatment and binary IV: Average Causal Response (ACR)

- Assume that we have treatment $s \in\{0,1,2, \ldots, \bar{s}\}$
- For example, IV is the implementation of a compulsory education law
- Treatment is the education level, which takes multiple values

■ We have the following three assumptions:

- ACR1 Independence: $\left\{Y_{0 i}, Y_{1 i}, \ldots, Y_{\bar{s} i} ; s_{0 i}, s_{1 i}\right\} \perp z_{i}$
- ACR2 First stage existence: $E\left[s_{1 i}-s_{0 i}\right] \neq 0$
- ACR3 Monotonicity: $s_{1 i}-s_{0 i} \leq 0 \forall i$ or vice versa
- ACR3 implicitly requires us to have an "ordered" list of values for treatment

Generalization of LATE: Multivalued Treatment

■ Now we consider multivalued treatment and binary IV: Average Causal Response (ACR)

- Assume that we have treatment $s \in\{0,1,2, \ldots, \bar{s}\}$
- For example, IV is the implementation of a compulsory education law
- Treatment is the education level, which takes multiple values

■ We have the following three assumptions:

- ACR1 Independence: $\left\{Y_{0 i}, Y_{1 i}, \ldots, Y_{\bar{s} i} ; s_{0 i}, s_{1 i}\right\} \perp z_{i}$
- ACR2 First stage existence: $E\left[s_{1 i}-s_{0 i}\right] \neq 0$
- ACR3 Monotonicity: $s_{1 i}-s_{0 i} \leq 0 \forall i$ or vice versa
- ACR3 implicitly requires us to have an "ordered" list of values for treatment

Generalization of LATE: Multivalued Treatment

■ Now we consider multivalued treatment and binary IV: Average Causal Response (ACR)

- Assume that we have treatment $s \in\{0,1,2, \ldots, \bar{s}\}$
- For example, IV is the implementation of a compulsory education law
- Treatment is the education level, which takes multiple values
- We have the following three assumptions:
- ACR1 Independence: $\left\{Y_{0 i}, Y_{1 i}, \ldots, Y_{\bar{s} i} ; s_{0 i}, s_{1 i}\right\} \perp z_{i}$
- ACR2 First stage existence: $E\left[s_{1 i}-s_{0 i}\right] \neq 0$
- ACR3 Monotonicity: $s_{1 i}-s_{0 i} \leq 0 \forall i$ or vice versa
- ACR3 implicitly requires us to have an "ordered" list of values for treatment

Generalization of LATE: Multivalued Treatment

■ Now we consider multivalued treatment and binary IV: Average Causal Response (ACR)

- Assume that we have treatment $s \in\{0,1,2, \ldots, \bar{s}\}$
- For example, IV is the implementation of a compulsory education law
- Treatment is the education level, which takes multiple values

■ We have the following three assumptions:

- ACR1 Independence: $\left\{Y_{0 i}, Y_{1 i}, \ldots, Y_{\bar{s} i} ; s_{0 i}, s_{1 i}\right\} \perp z_{i}$
- ACR2 First stage existence: $E\left[s_{1 i}-s_{0 i}\right] \neq 0$
- ACR3 Monotonicity: $s_{1 i}-s_{0 i} \leq 0 \forall i$ or vice versa
n ACR3 implicitly requires us to have an " ordered" list of values for treatment

Generalization of LATE: Multivalued Treatment

■ Now we consider multivalued treatment and binary IV: Average Causal Response (ACR)

- Assume that we have treatment $s \in\{0,1,2, \ldots, \bar{s}\}$
- For example, IV is the implementation of a compulsory education law
- Treatment is the education level, which takes multiple values

■ We have the following three assumptions:

- ACR1 Independence: $\left\{Y_{0 i}, Y_{1 i}, \ldots, Y_{\bar{s} i} ; s_{0 i}, s_{1 i}\right\} \perp z_{i}$
- ACR2 First stage existence: $E\left[s_{1 i}-s_{0 i}\right] \neq 0$
- ACR3 Monotonicity: $s_{1 i}-s_{0 i} \leq 0 \forall i$ or vice versa

■ ACR3 implicitly requires us to have an " ordered" list of values for treatment

Generalization of LATE: Multivalued Treatment

Generalization of LATE: Multivalued Treatment

■ Under ACR1-3, IV identifies a weighted average of the unit causal response Theorem 4.5.3 in MHE
When ACR1, ACR2, and ACR3 hold, we have:

where $\omega_{s}=\frac{P\left[s_{1 i} \geq s>s_{0 i}\right]}{\sum_{j=1}^{\hat{s}} P\left[s_{1 i} \geq j>s_{0 i}\right]}$

Generalization of LATE: Multivalued Treatment

■ Under ACR1-3, IV identifies a weighted average of the unit causal response

Theorem 4.5.3 in MHE

When ACR1, ACR2, and ACR3 hold, we have:

$$
\begin{aligned}
\frac{E\left[Y_{i} \mid z_{i}=1\right]-E\left[Y_{i} \mid z_{i}=0\right]}{E\left[s_{i} \mid z_{i}=1\right]-E\left[s_{i} \mid z_{i}=0\right]} & =\sum_{s=1}^{\hat{s}} \omega_{s} E\left[Y_{s i}-Y_{s-1, i} \mid s_{1 i} \geq s>s_{0 i}\right] \\
\text { where } \omega_{s} & =\frac{P\left[s_{1 i} \geq s>s_{0 i}\right]}{\sum_{j=1}^{\hat{s}} P\left[s_{1 i} \geq j>s_{0 i}\right]}
\end{aligned}
$$

Generalization of LATE: Multivalued Treatment

Generalization of LATE: Multivalued Treatment

- $Y_{s i}-Y_{s-1, i}$ is the unit response, or stepwise treatment effect
- For each unit/step change, we average over all compliers that cover this unit/step
- For instance, the unit change from $s=1$ to $s=2$ includes compliers
- We then average over all units/steps with a weight ω_{s}
- ω_{s} is the proportion of compliers involved in this unit change from $s-1$ to s
- It is a normalization, with ω_{s} summing up to 1 over s

Generalization of LATE: Multivalued Treatment

- $Y_{s i}-Y_{s-1, i}$ is the unit response, or stepwise treatment effect
- For each unit/step change, we average over all compliers that cover this unit/step
- For instance, the unit change from $s=1$ to $s=2$ includes compliers
- We then average over all units/steps with a weight ω_{s}
- ω_{S} is the pronortion of compliers involved in this unit change from $s-1$ to s
- It is a normalization, with ω_{s} summing up to 1 over s

Generalization of LATE: Multivalued Treatment

■ $Y_{s i}-Y_{s-1, i}$ is the unit response, or stepwise treatment effect
■ For each unit/step change, we average over all compliers that cover this unit/step
■ For instance, the unit change from $s=1$ to $s=2$ includes compliers

- who choose $s=0$ when $z=0$, but choose $s=2,3, \ldots, \bar{s}$ when $z=1$
- who choose $s=1$ when $z=0$, but choose $s=2,3, \ldots, \bar{s}$ when $z=1$
- We then average over all units/stens with a meight ω_{s}
- ω_{s} is the proportion of compliers involved in this unit change from $s-1$ to s
- It is a normalization, with ω_{s} summing up to 1 over s

Generalization of LATE: Multivalued Treatment

■ $Y_{s i}-Y_{s-1, i}$ is the unit response, or stepwise treatment effect
■ For each unit/step change, we average over all compliers that cover this unit/step

- For instance, the unit change from $s=1$ to $s=2$ includes compliers
- who choose $s=0$ when $z=0$, but choose $s=2,3, \ldots, \bar{s}$ when $z=1$
- who choose $s=1$ when $z=0$, but choose $s=2,3, \ldots, \bar{s}$ when $z=1$
- We then average over all units/steps with a weight ω_{s}
- ω_{s} is the proportion of compliers involved in this unit change from $s-1$ to s
- It is a normalization, with ω_{s} summing up to 1 over s

Generalization of LATE: Multivalued Treatment

■ $Y_{s i}-Y_{s-1, i}$ is the unit response, or stepwise treatment effect

- For each unit/step change, we average over all compliers that cover this unit/step
- For instance, the unit change from $s=1$ to $s=2$ includes compliers
- who choose $s=0$ when $z=0$, but choose $s=2,3, \ldots, \bar{s}$ when $z=1$
- who choose $s=1$ when $z=0$, but choose $s=2,3, \ldots, \bar{s}$ when $z=1$
- We then average over all units/steps with a weight ω_{s}
- ω_{s} is the proportion of compliers involved in this unit change from $s-1$ to s
- It is a normalization with ω_{s} summing un to 1 over s

Generalization of LATE: Multivalued Treatment

■ $Y_{s i}-Y_{s-1, i}$ is the unit response, or stepwise treatment effect

- For each unit/step change, we average over all compliers that cover this unit/step
- For instance, the unit change from $s=1$ to $s=2$ includes compliers
- who choose $s=0$ when $z=0$, but choose $s=2,3, \ldots, \bar{s}$ when $z=1$
- who choose $s=1$ when $z=0$, but choose $s=2,3, \ldots, \bar{s}$ when $z=1$
- We then average over all units/steps with a weight ω_{s}
- ω_{s} is the proportion of compliers involved in this unit change from $s-1$ to s
- It is a normalization, with ω_{s} summing up to 1 over s

Generalization of LATE: Multivalued Treatment

■ $Y_{s i}-Y_{s-1, i}$ is the unit response, or stepwise treatment effect

- For each unit/step change, we average over all compliers that cover this unit/step
- For instance, the unit change from $s=1$ to $s=2$ includes compliers
- who choose $s=0$ when $z=0$, but choose $s=2,3, \ldots, \bar{s}$ when $z=1$
- who choose $s=1$ when $z=0$, but choose $s=2,3, \ldots, \bar{s}$ when $z=1$

■ We then average over all units/steps with a weight ω_{s}

- ω_{s} is the proportion of compliers involved in this unit change from $s-1$ to s
- It is a normalization, with ω_{s} summing up to 1 over s

Generalization of LATE: Multivalued Treatment

■ $Y_{s i}-Y_{s-1, i}$ is the unit response, or stepwise treatment effect

- For each unit/step change, we average over all compliers that cover this unit/step
- For instance, the unit change from $s=1$ to $s=2$ includes compliers
- who choose $s=0$ when $z=0$, but choose $s=2,3, \ldots, \bar{s}$ when $z=1$
- who choose $s=1$ when $z=0$, but choose $s=2,3, \ldots, \bar{s}$ when $z=1$
- We then average over all units/steps with a weight ω_{s}
- ω_{s} is the proportion of compliers involved in this unit change from $s-1$ to s

■ It is a normalization, with ω_{s} summing up to 1 over s

Generalization of LATE: Multivalued Treatment

Generalization of LATE: Multivalued Treatment

- Interpretation for models with multiple instruments and multivalued treatment is the combination of the previous two cases
- A weighted average of the ACR for each instrument

■ Of course the weighting scheme could be very complicated

- Weighted average of some weighted averages.

Generalization of LATE: Multivalued Treatment

- Interpretation for models with multiple instruments and multivalued treatment is the combination of the previous two cases
- A weighted average of the ACR for each instrument
n Of course the weighting scheme could be very complicated
- Weighted average of some weighted averages.

Generalization of LATE: Multivalued Treatment

- Interpretation for models with multiple instruments and multivalued treatment is the combination of the previous two cases
- A weighted average of the ACR for each instrument
- Of course the weighting scheme could be very complicated
- Weighted average of some weighted averages.

Generalization of LATE: Multivalued Treatment

- Interpretation for models with multiple instruments and multivalued treatment is the combination of the previous two cases
- A weighted average of the ACR for each instrument
- Of course the weighting scheme could be very complicated
- Weighted average of some weighted averages...

Generalization of LATE: Multivalued IV

Generalization of LATE: Multivalued IV

- We have already checked multiple IV and multivalued treatment cases
- We now consider multivalued IV
- This can be a little bit tricky

■ There is a simple first thought of this issue: transit multivalued IV to multiple IV

Generalization of LATE: Multivalued IV

- We have already checked multiple IV and multivalued treatment cases
- We now consider multivalued IV
- This can be a little bit tricky
- There is a simple first thought of this issue: transit multivalued IV to multiple IV

Generalization of LATE: Multivalued IV

- We have already checked multiple IV and multivalued treatment cases
- We now consider multivalued IV
- This can be a little bit tricky
- There is a simple first thought of this issue: transit multivalued IV to multiple IV

Generalization of LATE: Multivalued IV

- We have already checked multiple IV and multivalued treatment cases
- We now consider multivalued IV
- This can be a little bit tricky

■ There is a simple first thought of this issue: transit multivalued IV to multiple IV

Generalization of LATE: Multivalued IV

Generalization of LATE: Multivalued IV

■ We can first decompose the multivalued IV to multiple dummies

- Each dummy represents a specific value of IV

■ For example, if $z=0,1,2$, we have dummies z_{1}, z_{2} as indicators

- $z_{1}=1$ if $z=1 ; z_{1}=0$ if $z=0,2$
- $z_{2}=1$ if $z=2 ; z_{2}=0$ if $z=0,1$

Generalization of LATE: Multivalued IV

■ We can first decompose the multivalued IV to multiple dummies
■ Each dummy represents a specific value of IV

- For example, if $z=0,1,2$, we have dummies z_{1}, z_{2} as indicators

■ $z_{1}=1$ if $z=1 ; z_{1}=0$ if $z=0,2$

- $z_{2}=1$ if $z=2 ; z_{2}=0$ if $z=0,1$

Generalization of LATE: Multivalued IV

■ We can first decompose the multivalued IV to multiple dummies
■ Each dummy represents a specific value of IV
■ For example, if $z=0,1,2$, we have dummies z_{1}, z_{2} as indicators

- $z_{1}=1$ if $z=1 ; z_{1}=0$ if $z=0,2$
- $z_{2}=1$ if $z=2 ; z_{2}=0$ if $z=0,1$

Generalization of LATE: Multivalued IV

■ We can first decompose the multivalued IV to multiple dummies

- Each dummy represents a specific value of IV

■ For example, if $z=0,1,2$, we have dummies z_{1}, z_{2} as indicators
■ $z_{1}=1$ if $z=1 ; z_{1}=0$ if $z=0,2$

- $z_{2}=1$ if $z=2 ; z_{2}=0$ if $z=0,1$

Generalization of LATE: Multivalued IV

- We can first decompose the multivalued IV to multiple dummies
- Each dummy represents a specific value of IV

■ For example, if $z=0,1,2$, we have dummies z_{1}, z_{2} as indicators
■ $z_{1}=1$ if $z=1 ; z_{1}=0$ if $z=0,2$

- $z_{2}=1$ if $z=2 ; z_{2}=0$ if $z=0,1$

Generalization of LATE: Multivalued IV

Generalization of LATE: Multivalued IV

■ Then we run the regression using the set of dummies z_{1}, z_{2} as instruments

- We can interpret the results as in multiple IV case
- But is this correct?
- An important assumption is monotonicity for each dummy IV
- However, it is not true for z_{1}
- Because for the group of people with $z_{1}=1$
- They can be either $z=0$ or $z=2$
- It is possible that $D_{i}\left(z_{i}=0\right)<D_{i}\left(z_{i}=1\right)<D_{i}\left(z_{i}=2\right)$

■ Then, for $z_{1}=1$, some people go to one direction $(z=2)$, some people go to the other, violating the monotonicity assumption

Generalization of LATE: Multivalued IV

- Then we run the regression using the set of dummies z_{1}, z_{2} as instruments
- We can interpret the results as in multiple IV case
- But is this correct?

■ An important assumption is monotonicity for each dummy IV

- However, it is not true for z_{1}
- Because for the group of people with $z_{1}=1$
- They can be either $z=0$ or $z=2$

■ It is possible that $D_{i}\left(z_{i}=0\right)<D_{i}\left(z_{i}=1\right)<D_{i}\left(z_{i}=2\right)$

- Then, for $z_{1}=1$, some people go to one direction ($z=2$), some people go to the other, violating the monotonicity assumption

Generalization of LATE: Multivalued IV

- Then we run the regression using the set of dummies z_{1}, z_{2} as instruments
- We can interpret the results as in multiple IV case
- But is this correct?
- An important assumption is monotonicity for each dummy IV
- However, it is not true for z_{1}
- Because for the group of people with $z_{1}=1$
- They can be either $z=0$ or $z=2$
- It is possible that $D_{i}\left(z_{i}=0\right)<D_{i}\left(z_{i}=1\right)<D_{i}\left(z_{i}=2\right)$
- Then for $z_{1}=1$, some people go to one direction $(z=2)$, some people go to the other, violating the monotonicity assumption

Generalization of LATE: Multivalued IV

- Then we run the regression using the set of dummies z_{1}, z_{2} as instruments
- We can interpret the results as in multiple IV case
- But is this correct?
- An important assumption is monotonicity for each dummy IV
- However, it is not true for z_{1}
- Because for the group of people with $z_{1}=1$
- They can be either $z=0$ or $z=2$
- It is possible that $D_{i}\left(z_{i}=0\right)<D_{i}\left(z_{i}=1\right)<D_{i}\left(z_{i}=2\right)$
- Then, for $z_{1}=1$, some people go to one direction $(z=2)$, some people go to the other, violating the monotonicity assumption

Generalization of LATE: Multivalued IV

- Then we run the regression using the set of dummies z_{1}, z_{2} as instruments
- We can interpret the results as in multiple IV case
- But is this correct?
- An important assumption is monotonicity for each dummy IV

■ However, it is not true for z_{1}

- Because for the group of people with $z_{1}=1$
- They can be either $z=0$ or $z=2$
$=$ It is possible that $D_{i}\left(z_{i}=0\right)<D_{i}\left(z_{i}=1\right)<D_{i}\left(z_{i}=2\right)$
- Then, for $z_{1}=1$, some people go to one direction $(z=2)$, some people go to the other, violating the monotonicity assumption

Generalization of LATE: Multivalued IV

■ Then we run the regression using the set of dummies z_{1}, z_{2} as instruments

- We can interpret the results as in multiple IV case
- But is this correct?
- An important assumption is monotonicity for each dummy IV
- However, it is not true for z_{1}
- Because for the group of people with $z_{1}=1$
- They can be either $z=0$ or $z=2$
- It is possible that $D_{i}\left(z_{i}=0\right)<D_{i}\left(z_{i}=1\right)<D_{i}\left(z_{i}=2\right)$
- Then for $z_{1}=1$, some people oo to one direction $(z=2)$, some people go to the other, violating the monotonicity assumption

Generalization of LATE: Multivalued IV

■ Then we run the regression using the set of dummies z_{1}, z_{2} as instruments

- We can interpret the results as in multiple IV case
- But is this correct?
- An important assumption is monotonicity for each dummy IV
- However, it is not true for z_{1}
- Because for the group of people with $z_{1}=1$
- They can be either $z=0$ or $z=2$
- It is possible that $D_{i}\left(z_{i}=0\right)<D_{i}\left(z_{i}=1\right)<D_{i}\left(z_{i}=2\right)$
\square Then, for $z_{1}=1$, some people go to one direction $(z=2)$, some people go to the other, violating the monotonicity assumption

Generalization of LATE: Multivalued IV

- Then we run the regression using the set of dummies z_{1}, z_{2} as instruments
- We can interpret the results as in multiple IV case
- But is this correct?
- An important assumption is monotonicity for each dummy IV

■ However, it is not true for z_{1}

- Because for the group of people with $z_{1}=1$
- They can be either $z=0$ or $z=2$
- It is possible that $D_{i}\left(z_{i}=0\right)<D_{i}\left(z_{i}=1\right)<D_{i}\left(z_{i}=2\right)$
- Then, for $z_{1}=1$, some people go to one direction $(z=2)$, some people go to the other, violating the monotonicity assumption

Generalization of LATE: Multivalued IV

- Then we run the regression using the set of dummies z_{1}, z_{2} as instruments
- We can interpret the results as in multiple IV case
- But is this correct?
- An important assumption is monotonicity for each dummy IV

■ However, it is not true for z_{1}

- Because for the group of people with $z_{1}=1$
- They can be either $z=0$ or $z=2$
\square It is possible that $D_{i}\left(z_{i}=0\right)<D_{i}\left(z_{i}=1\right)<D_{i}\left(z_{i}=2\right)$
- Then, for $z_{1}=1$, some people go to one direction $(z=2)$, some people go to the other, violating the monotonicity assumption

Generalization of LATE: Multivalued IV

Generalization of LATE: Multivalued IV

- Thus, monotonicity assumption is not as innocuous as in the 2×2 case
- We need to go to deep choice structure of this assumption Axiom of Revealed Preference
- In this case, you have to analyze one by one based on your specific context
- If some optimal bundle in situation B is also feasible but not chosen in situation A, then the optimal bundle in situation A is not feasible in situation $B\left(x_{A} \succsim_{R} x_{B}\right)$
- This is Weak Axiom of Revealed Preference

Generalization of LATE: Multivalued IV

- Thus, monotonicity assumption is not as innocuous as in the 2×2 case
- We need to go to deep choice structure of this assumption: Axiom of Revealed Preference
- In this case, you have to analyze one by one based on your specific context
- If some optimal bundle in situation B is also feasible but not chosen in situation

A , then the optimal bundle in situation A is not feasible in situation $\mathrm{B}\left(x_{A} \succsim_{R} x_{B}\right)$

- This is Weak Axiom of Revealed Preference

Generalization of LATE: Multivalued IV

- Thus, monotonicity assumption is not as innocuous as in the 2×2 case
- We need to go to deep choice structure of this assumption:

Axiom of Revealed Preference
■ In this case, you have to analyze one by one based on your specific context

WARP Definition 2.F.1 MWG

The Walrasian demand function $x(p, w)$ satisfies the weak axiom of revealed preference if the following holds for any two price wealth situations ($p, w),\left(p^{\prime}, u^{\prime}\right)$

- If some optimal bundle in situation B is also feasible but not chosen in situation

A , then the optimal bundle in situation A is not feasible in situation $\mathrm{B}\left(x_{A} \succsim_{R} x_{B}\right)$

- This is Weak Axiom of Revealed Preference

Generalization of LATE: Multivalued IV

- Thus, monotonicity assumption is not as innocuous as in the 2×2 case

■ We need to go to deep choice structure of this assumption:
Axiom of Revealed Preference

- In this case, you have to analyze one by one based on your specific context

WARP Definition 2.F. 1 MWG

The Walrasian demand function $x(p, w)$ satisfies the weak axiom of revealed preference if the following holds for any two price wealth situations $(p, w),\left(p^{\prime}, w^{\prime}\right)$:

$$
\text { If } p \cdot x\left(p^{\prime}, w^{\prime}\right) \leq w, \text { and } x\left(p^{\prime}, w^{\prime}\right) \neq x(p, w) \text {, then } p^{\prime} \cdot x(p, w)>w^{\prime}
$$

```
- If some optimal bundle in situation B is also feasible but not chosen in situation
    A, then the optimal bundle in situation }\textrm{A}\mathrm{ is not feasible in situation B ( }\mp@subsup{x}{A}{}\mp@subsup{\succsim}{R}{}\mp@subsup{x}{B}{}
- This is Weak Axiom of Revealed Preference
```


Generalization of LATE: Multivalued IV

- Thus, monotonicity assumption is not as innocuous as in the 2×2 case

■ We need to go to deep choice structure of this assumption:
Axiom of Revealed Preference

- In this case, you have to analyze one by one based on your specific context

WARP Definition 2.F. 1 MWG

The Walrasian demand function $x(p, w)$ satisfies the weak axiom of revealed preference if the following holds for any two price wealth situations $(p, w),\left(p^{\prime}, w^{\prime}\right)$:

$$
\text { If } p \cdot x\left(p^{\prime}, w^{\prime}\right) \leq w, \text { and } x\left(p^{\prime}, w^{\prime}\right) \neq x(p, w) \text {, then } p^{\prime} \cdot x(p, w)>w^{\prime}
$$

- If some optimal bundle in situation B is also feasible but not chosen in situation A , then the optimal bundle in situation A is not feasible in situation $\mathrm{B}\left(x_{A} \gtrsim_{R} x_{B}\right)$
- This is Weak Axiom of Revealed Preference

Generalization of LATE: Multivalued IV

- Thus, monotonicity assumption is not as innocuous as in the 2×2 case

■ We need to go to deep choice structure of this assumption:
Axiom of Revealed Preference

- In this case, you have to analyze one by one based on your specific context

WARP Definition 2.F. 1 MWG

The Walrasian demand function $x(p, w)$ satisfies the weak axiom of revealed preference if the following holds for any two price wealth situations $(p, w),\left(p^{\prime}, w^{\prime}\right)$:

$$
\text { If } p \cdot x\left(p^{\prime}, w^{\prime}\right) \leq w, \text { and } x\left(p^{\prime}, w^{\prime}\right) \neq x(p, w) \text {, then } p^{\prime} \cdot x(p, w)>w^{\prime}
$$

- If some optimal bundle in situation B is also feasible but not chosen in situation A , then the optimal bundle in situation A is not feasible in situation $\mathrm{B}\left(x_{A} \gtrsim_{R} x_{B}\right)$
■ This is Weak Axiom of Revealed Preference

Generalization of LATE: Multivalued IV

Generalization of LATE: Multivalued IV

- A stronger version of WARP is SARP

SARP Definition 3.J.1 MWG

```
The market demand function x( p,w) satisfies the strong axiom of revealed preference
if for any list of ( }\mp@subsup{p}{}{1},\mp@subsup{w}{}{1})\ldots(\mp@subsup{p}{}{N},\mp@subsup{w}{}{N}
with x( p
we have }\mp@subsup{p}{}{N}\cdotx(\mp@subsup{p}{}{1},\mp@subsup{w}{}{1})>\mp@subsup{w}{}{N}\mathrm{ , whenever }\mp@subsup{p}{}{n}\cdot\mp@subsup{x}{}{\prime}(\mp@subsup{p}{}{n+1},\mp@subsup{w}{}{n+1})\leq\mp@subsup{w}{}{n}\mathrm{ for all n }\leqN-
```

- SARP adds transitivity to WARP

E If $x_{N} \succsim_{R} x_{N-1}, x_{N-1} \succsim_{R} x_{N-2} \ldots x_{2} \succsim_{R} x_{1}$, we have $x_{N} \succsim_{R} x_{1}$

- Let's go to the example of MTO in Pinto (2015)

Generalization of LATE: Multivalued IV

- A stronger version of WARP is SARP

SARP Definition 3.J.1 MWG

The market demand function $x(p, w)$ satisfies the strong axiom of revealed preference if for any list of $\left(p^{1}, w^{1}\right), \ldots\left(p^{N}, w^{N}\right)$
with $x\left(p^{n+1}, w^{n+1}\right) \neq x\left(p^{n}, w^{n}\right)$ for all $n \leq N-1$,
we have $p^{N} \cdot x\left(p^{1}, w^{1}\right)>w^{N}$, whenever $p^{n} \cdot x\left(p^{n+1}, w^{n+1}\right) \leq w^{n}$ for all $n \leq N-1$

- SARP adds transitivity to WARP
- If $x_{N} \succsim_{R} x_{N-1}, x_{N-1} \succsim_{R} x_{N-2} \ldots x_{2} \succsim_{R} x_{1}$, we have $x_{N} \succsim_{R} x_{1}$
- Let's go to the example of MTO in Pinto (2015)

Generalization of LATE: Multivalued IV

- A stronger version of WARP is SARP

SARP Definition 3.J. 1 MWG

The market demand function $x(p, w)$ satisfies the strong axiom of revealed preference if for any list of $\left(p^{1}, w^{1}\right), \ldots\left(p^{N}, w^{N}\right)$
with $x\left(p^{n+1}, w^{n+1}\right) \neq x\left(p^{n}, w^{n}\right)$ for all $n \leq N-1$,
we have $p^{N} \cdot x\left(p^{1}, w^{1}\right)>w^{N}$, whenever $p^{n} \cdot x\left(p^{n+1}, w^{n+1}\right) \leq w^{n}$ for all $n \leq N-1$

■ SARP adds transitivity to WARP

- If $x_{N} \succsim_{R} x_{N-1}, x_{N-1} \succsim_{R} x_{N-2} \ldots x_{2} \succsim_{R} x_{1}$, we have $x_{N} \succsim_{R} x_{1}$
- Let's go to the example of MTO in Pinto (2015)

Generalization of LATE: Multivalued IV

- A stronger version of WARP is SARP

SARP Definition 3.J.1 MWG

The market demand function $x(p, w)$ satisfies the strong axiom of revealed preference if for any list of $\left(p^{1}, w^{1}\right), \ldots\left(p^{N}, w^{N}\right)$
with $x\left(p^{n+1}, w^{n+1}\right) \neq x\left(p^{n}, w^{n}\right)$ for all $n \leq N-1$,
we have $p^{N} \cdot x\left(p^{1}, w^{1}\right)>w^{N}$, whenever $p^{n} \cdot x\left(p^{n+1}, w^{n+1}\right) \leq w^{n}$ for all $n \leq N-1$

■ SARP adds transitivity to WARP

- If $x_{N} \succsim_{R} x_{N-1}, x_{N-1} \succsim_{R} x_{N-2} \ldots x_{2} \succsim_{R} x_{1}$, we have $x_{N} \gtrsim_{R} x_{1}$
- Let's go to the example of MTO in Pinto (2015)

Generalization of LATE: Multivalued IV

- A stronger version of WARP is SARP

SARP Definition 3.J.1 MWG

The market demand function $x(p, w)$ satisfies the strong axiom of revealed preference if for any list of $\left(p^{1}, w^{1}\right), \ldots\left(p^{N}, w^{N}\right)$
with $x\left(p^{n+1}, w^{n+1}\right) \neq x\left(p^{n}, w^{n}\right)$ for all $n \leq N-1$,
we have $p^{N} \cdot x\left(p^{1}, w^{1}\right)>w^{N}$, whenever $p^{n} \cdot x\left(p^{n+1}, w^{n+1}\right) \leq w^{n}$ for all $n \leq N-1$

■ SARP adds transitivity to WARP

- If $x_{N} \succsim_{R} x_{N-1}, x_{N-1} \succsim_{R} x_{N-2} \ldots x_{2} \succsim_{R} x_{1}$, we have $x_{N} \gtrsim_{R} x_{1}$
- Let's go to the example of MTO in Pinto (2015)

Generalization of LATE: Multivalued IV

Generalization of LATE: Multivalued IV

■ Moving to Opportunity (MTO) is a housing experiment to encourage low-income families to move to neighborhood with low poverty rate

- There are three policy groups (three values of IV)
- There are three choices (three values of treatment)

Generalization of LATE: Multivalued IV

■ Moving to Opportunity (MTO) is a housing experiment to encourage low-income families to move to neighborhood with low poverty rate

- There are three policy groups (three values of IV)
- Control group: No vouchers $\left(z_{1}\right)$
- Experimental group: Vouchers, available only for housing lease in low poverty neighborhood $\left(z_{2}\right)$
- Section 8 group: Vouchers, available for any housing lease anywhere (z_{3})
- There are three choices (three values of treatment)

Generalization of LATE: Multivalued IV

■ Moving to Opportunity (MTO) is a housing experiment to encourage low-income families to move to neighborhood with low poverty rate

- There are three policy groups (three values of IV)
- Control group: No vouchers $\left(z_{1}\right)$
- Experimental group: Vouchers, available only for housing lease in low poverty neighborhood $\left(z_{2}\right)$
- Section 8 group: Vouchers, available for any housing lease anywhere (z_{3})
- There are three choices (three values of treatment)

Generalization of LATE: Multivalued IV

■ Moving to Opportunity (MTO) is a housing experiment to encourage low-income families to move to neighborhood with low poverty rate

- There are three policy groups (three values of IV)
- Control group: No vouchers $\left(z_{1}\right)$
- Experimental group: Vouchers, available only for housing lease in low poverty neighborhood $\left(z_{2}\right)$
- Section 8 group: Vouchers, available for any housing lease anywhere (z_{3})
- There are three choices (three values of treatment)

Generalization of LATE: Multivalued IV

■ Moving to Opportunity (MTO) is a housing experiment to encourage low-income families to move to neighborhood with low poverty rate

- There are three policy groups (three values of IV)
- Control group: No vouchers $\left(z_{1}\right)$
- Experimental group: Vouchers, available only for housing lease in low poverty neighborhood (z_{2})
- Section 8 group: Vouchers, available for any housing lease anywhere $\left(z_{3}\right)$
- There are three choices (three values of treatment)

Generalization of LATE: Multivalued IV

■ Moving to Opportunity (MTO) is a housing experiment to encourage low-income families to move to neighborhood with low poverty rate

- There are three policy groups (three values of IV)
- Control group: No vouchers $\left(z_{1}\right)$
- Experimental group: Vouchers, available only for housing lease in low poverty neighborhood $\left(z_{2}\right)$
- Section 8 group: Vouchers, available for any housing lease anywhere $\left(z_{3}\right)$
- There are three choices (three values of treatment)
- Not relocating ($t=1$)
- Relocating to a low poverty neighborhood $(t=2)$
- Relocating to a high poverty neighborhood $(t=3)$

Generalization of LATE: Multivalued IV

■ Moving to Opportunity (MTO) is a housing experiment to encourage low-income families to move to neighborhood with low poverty rate

- There are three policy groups (three values of IV)
- Control group: No vouchers $\left(z_{1}\right)$
- Experimental group: Vouchers, available only for housing lease in low poverty neighborhood $\left(z_{2}\right)$
- Section 8 group: Vouchers, available for any housing lease anywhere $\left(z_{3}\right)$
- There are three choices (three values of treatment)

■ Not relocating ($t=1$)

- Relocating to a low poverty neighborhood $(t=2)$
- Relocating to a high poverty neighborhood $(t=3)$

Generalization of LATE: Multivalued IV

■ Moving to Opportunity (MTO) is a housing experiment to encourage low-income families to move to neighborhood with low poverty rate

- There are three policy groups (three values of IV)
- Control group: No vouchers $\left(z_{1}\right)$
- Experimental group: Vouchers, available only for housing lease in low poverty neighborhood $\left(z_{2}\right)$
- Section 8 group: Vouchers, available for any housing lease anywhere $\left(z_{3}\right)$
- There are three choices (three values of treatment)

■ Not relocating ($t=1$)

- Relocating to a low poverty neighborhood $(t=2)$
- Relocating to a high poverty neighborhood $(t=3)$

Generalization of LATE: Multivalued IV

■ Moving to Opportunity (MTO) is a housing experiment to encourage low-income families to move to neighborhood with low poverty rate

- There are three policy groups (three values of IV)
- Control group: No vouchers $\left(z_{1}\right)$
- Experimental group: Vouchers, available only for housing lease in low poverty neighborhood $\left(z_{2}\right)$
- Section 8 group: Vouchers, available for any housing lease anywhere $\left(z_{3}\right)$
- There are three choices (three values of treatment)

■ Not relocating ($t=1$)

- Relocating to a low poverty neighborhood $(t=2)$
- Relocating to a high poverty neighborhood $(t=3)$

Generalization of LATE: Multivalued IV

Figure 1: Neighborhood Relocation by Voucher Assignment and Compliance

Generalization of LATE: Multivalued IV

Generalization of LATE: Multivalued IV

- Thus, we have $3 \times 3 \times 3=27$ types of agents
- Only 12 available equations for observed expectations
- It is impossible to invert a linear system of 9 equations to identify any causal effect with 27 behavior types
- How to eliminate types as we do in monotonicity? ARP

Generalization of LATE: Multivalued IV

- Thus, we have $3 \times 3 \times 3=27$ types of agents
- Only 12 available equations for observed expectations
- It is impossible to invert a linear system of 9 equations to identify any causal effect with 27 behavior types
= How to eliminate types as we do in monotonicity? ARP

Generalization of LATE: Multivalued IV

- Thus, we have $3 \times 3 \times 3=27$ types of agents

■ Only 12 available equations for observed expectations

- It is impossible to invert a linear system of 9 equations to identify any causal effect with 27 behavior types
- How to eliminate types as we do in monotonicity? ARP

Generalization of LATE: Multivalued IV

- Thus, we have $3 \times 3 \times 3=27$ types of agents
- Only 12 available equations for observed expectations
- It is impossible to invert a linear system of 9 equations to identify any causal effect with 27 behavior types

■ How to eliminate types as we do in monotonicity? ARP

Generalization of LATE: Multivalued IV

Generalization of LATE: Multivalued IV

■ Let $u_{\omega}(k, t)$ be the utility function of family ω (k consumption, t relocation choice)

- Let $W_{\omega}(z, t)$ be the budget set of family ω under relocation decision $t \in\{1,2,3\}$ and MTO voucher $z \in\left\{z_{1}, z_{2}, z_{3}\right\}$
- Let $S_{\omega}=\left[C_{\omega}\left(z_{1}\right), C_{\omega}\left(z_{2}\right), C_{\omega}\left(z_{3}\right)\right]$ denote the type of family ω, defined by relocation responses $C(z)$ given different vouchers

Generalization of LATE: Multivalued IV

- Let $u_{\omega}(k, t)$ be the utility function of family ω (k consumption, t relocation choice)
- Let $W_{\omega}(z, t)$ be the budget set of family ω under relocation decision $t \in\{1,2,3\}$ and MTO voucher $z \in\left\{z_{1}, z_{2}, z_{3}\right\}$
- Let $S_{\omega}=\left[C_{\omega}\left(z_{1}\right), C_{\omega}\left(z_{2}\right), C_{\omega}\left(z_{3}\right)\right]$ denote the type of family ω, defined by relocation responses $C(z)$ given different vouchers

Generalization of LATE: Multivalued IV

■ Let $u_{\omega}(k, t)$ be the utility function of family ω (k consumption, t relocation choice)

- Let $W_{\omega}(z, t)$ be the budget set of family ω under relocation decision $t \in\{1,2,3\}$ and MTO voucher $z \in\left\{z_{1}, z_{2}, z_{3}\right\}$
- Let $S_{\omega}=\left[C_{\omega}\left(z_{1}\right), C_{\omega}\left(z_{2}\right), C_{\omega}\left(z_{3}\right)\right]$ denote the type of family ω, defined by relocation responses $C(z)$ given different vouchers

Generalization of LATE: Multivalued IV

Generalization of LATE: Multivalued IV

■ Now we translate three subsidizing rules to budget set:

- Control group $\left(z_{1}=1\right)$ subsidies nothing
- Experimental group $\left(z_{2}=1\right)$ subsidies relocating to low poverty neighborhood
- Section 8 group $\left(z_{3}=1\right)$ subsidies any relocation

Assumption A-1, A-2 Pinto (2015)
According to the features of MTO, we assume the budget sets satisfy

$$
\begin{align*}
& W_{\omega}\left(z_{1}, 2\right) \mp W_{\omega}\left(z_{2}, 2\right) \tag{1}\\
&=W_{\omega}\left(z_{3}, 2\right) \tag{2}\\
& W_{\omega}\left(z_{1}, 3\right)=W_{\omega}\left(z_{2}, 3\right) \mp W_{\omega}\left(z_{3}, 3\right) \tag{3}\\
& W_{\omega}\left(z_{1}, 1\right)=W_{\omega}\left(z_{1}, 2\right)=W_{\omega}\left(z_{1}, 3\right) \\
&=W_{\omega}\left(z_{2}, 1\right)=W_{\omega}\left(z_{2}, 3\right)=W_{\omega}\left(z_{3}, 1\right)
\end{align*}
$$

- What are the meanings of these three relations?

Generalization of LATE: Multivalued IV

- Now we translate three subsidizing rules to budget set:
- Control group ($z_{1}=1$) subsidies nothing
- Experimental group ($z_{2}=1$) subsidies relocating to low poverty neighborhood
- Section 8 group $\left(z_{3}=1\right)$ subsidies any relocation

Assumption A-1, A-2 Pinto (2015)
According to the features of MTO, we assume the budget sets satisfy

$$
\begin{aligned}
& W_{\omega}\left(z_{1}, 2\right) \mp W_{\omega}\left(z_{2}, 2\right)=W_{\omega}\left(z_{3}, 2\right) \\
& W_{\omega}\left(z_{1}, 3\right)=W_{\omega}\left(z_{2}, 3\right) \mp W_{\omega}\left(z_{3}, 3\right)
\end{aligned}
$$

$$
\begin{equation*}
W_{\omega}\left(z_{1}, 1\right)=W_{\omega}\left(z_{1}, 2\right)=W_{\omega}\left(z_{1}, 3\right)=W_{\omega}\left(z_{2}, 1\right)=W_{\omega}\left(z_{2}, 3\right)=W_{\omega}\left(z_{3}, 1\right) \tag{3}
\end{equation*}
$$

- What are the meanings of these three relations?

Generalization of LATE: Multivalued IV

■ Now we translate three subsidizing rules to budget set:

- Control group ($z_{1}=1$) subsidies nothing
- Experimental group ($z_{2}=1$) subsidies relocating to low poverty neighborhood - Section 8 group ($z_{3}=1$) subsidies any relocation

Assumption A-1, A-2 Pinto (2015)
According to the features of MTO, we assume the budget sets satisfy

$$
\begin{aligned}
& W_{\omega}\left(z_{1}, 2\right) \mp W_{\omega}\left(z_{2}, 2\right)=W_{\omega}\left(z_{3}, 2\right) \\
& W_{\omega}\left(z_{1}, 3\right)=W_{\omega}\left(z_{2}, 3\right) \varsubsetneqq W_{\omega}\left(z_{3}, 3\right)
\end{aligned}
$$

$$
\begin{equation*}
W_{\omega}\left(z_{1}, 1\right)=W_{\omega}\left(z_{1}, 2\right)=W_{\omega}\left(z_{1}, 3\right)=W_{\omega}\left(z_{2}, 1\right)=W_{\omega}\left(z_{2}, 3\right)=W_{\omega}\left(z_{3}, 1\right) \tag{3}
\end{equation*}
$$

- What are the meanings of these three relations?

Generalization of LATE: Multivalued IV

- Now we translate three subsidizing rules to budget set:
- Control group ($z_{1}=1$) subsidies nothing
- Experimental group ($z_{2}=1$) subsidies relocating to low poverty neighborhood
- Section 8 group ($z_{3}=1$) subsidies any relocation

Assumption A-1, A-2 Pinto (2015)

According to the features of MTO, we assume the budget sets satisfy

- What are the meanings of these three relations?

Generalization of LATE: Multivalued IV

- Now we translate three subsidizing rules to budget set:
- Control group ($z_{1}=1$) subsidies nothing
- Experimental group $\left(z_{2}=1\right)$ subsidies relocating to low poverty neighborhood

■ Section 8 group ($z_{3}=1$) subsidies any relocation

Assumption A-1, A-2 Pinto (2015)

According to the features of MTO, we assume the budget sets satisfy:

$$
\begin{gather*}
W_{\omega}\left(z_{1}, 2\right) \mp W_{\omega}\left(z_{2}, 2\right)=W_{\omega}\left(z_{3}, 2\right) \tag{1}\\
W_{\omega}\left(z_{1}, 3\right)=W_{\omega}\left(z_{2}, 3\right) \mp W_{\omega}\left(z_{3}, 3\right) \tag{2}\\
W_{\omega}\left(z_{1}, 1\right)=W_{\omega}\left(z_{1}, 2\right)=W_{\omega}\left(z_{1}, 3\right)=W_{\omega}\left(z_{2}, 1\right)=W_{\omega}\left(z_{2}, 3\right)=W_{\omega}\left(z_{3}, 1\right) \tag{3}
\end{gather*}
$$

Generalization of LATE: Multivalued IV

- Now we translate three subsidizing rules to budget set:
- Control group ($z_{1}=1$) subsidies nothing
- Experimental group ($z_{2}=1$) subsidies relocating to low poverty neighborhood
- Section 8 group ($z_{3}=1$) subsidies any relocation

Assumption A-1, A-2 Pinto (2015)

According to the features of MTO, we assume the budget sets satisfy:

$$
\begin{gather*}
W_{\omega}\left(z_{1}, 2\right) \mp W_{\omega}\left(z_{2}, 2\right)=W_{\omega}\left(z_{3}, 2\right) \tag{1}\\
W_{\omega}\left(z_{1}, 3\right)=W_{\omega}\left(z_{2}, 3\right) \mp W_{\omega}\left(z_{3}, 3\right) \tag{2}\\
W_{\omega}\left(z_{1}, 1\right)=W_{\omega}\left(z_{1}, 2\right)=W_{\omega}\left(z_{1}, 3\right)=W_{\omega}\left(z_{2}, 1\right)=W_{\omega}\left(z_{2}, 3\right)=W_{\omega}\left(z_{3}, 1\right) \tag{3}
\end{gather*}
$$

■ What are the meanings of these three relations?

Generalization of LATE: Multivalued IV

Generalization of LATE: Multivalued IV

- (1): If you choose to relocate to low poverty neighborhood $(t=2)$, your consumption would be higher if you are in Experimental or Section 8 groups
- (2): If you choose to relocate to high poverty neighborhood ($t=3$), your consumption would be higher if you are in Section 8 group
- (3): If you choose not to relocate, or relocate to places that is not supported by your MTO group, your budget will not change

Generalization of LATE: Multivalued IV

- (1): If you choose to relocate to low poverty neighborhood $(t=2)$, your consumption would be higher if you are in Experimental or Section 8 groups
■ (2): If you choose to relocate to high poverty neighborhood $(t=3)$, your consumption would be higher if you are in Section 8 group
- (3): If you choose not to relocate, or relocate to places that is not supported by your MTO group, your budget will not change

Generalization of LATE: Multivalued IV

- (1): If you choose to relocate to low poverty neighborhood $(t=2)$, your consumption would be higher if you are in Experimental or Section 8 groups
■ (2): If you choose to relocate to high poverty neighborhood $(t=3)$, your consumption would be higher if you are in Section 8 group
- (3): If you choose not to relocate, or relocate to places that is not supported by your MTO group, your budget will not change

Generalization of LATE: Multivalued IV

Generalization of LATE: Multivalued IV

- Then we derive the following choice rule

Lemma L-1 Pinto (2015)

If preferences are rational, under Assumption A-1 and A-2

$$
\begin{aligned}
& \text { 1. } C_{\omega}\left(z_{1}\right)=2 \Rightarrow C_{\omega}\left(z_{2}\right)=2, C_{\omega}\left(z_{3}\right) \neq 1 \\
& \text { 2. } C_{\omega}\left(z_{1}\right)=3 \Rightarrow C_{\omega}\left(z_{2}\right) \neq 1, C_{\omega}\left(z_{3}\right) \neq 1 \\
& \text { 3. } C_{\omega}\left(z_{2}\right)=1 \Rightarrow C_{\omega}\left(z_{1}\right)=1, C_{\omega}\left(z_{3}\right) \neq 2 \\
& \text { 4. } C_{\omega}\left(z_{2}\right)=3 \Rightarrow C_{\omega}\left(z_{1}\right)=3, C_{\omega}\left(z_{3}\right)=3 \\
& \text { 5. } C_{\omega}\left(z_{3}\right)=1 \Rightarrow C_{\omega}\left(z_{1}\right)=1, C_{\omega}\left(z_{2}\right)=1 \\
& \text { 6. } C_{\omega}\left(z_{3}\right)=2 \Rightarrow C_{\omega}\left(z_{2}\right)=2
\end{aligned}
$$

Generalization of LATE: Multivalued IV

- Then we derive the following choice rule

Lemma L-1 Pinto (2015)
If preferences are rational, under Assumption A-1 and A-2:

$$
\begin{aligned}
& \text { 1. } C_{\omega}\left(z_{1}\right)=2 \Rightarrow C_{\omega}\left(z_{2}\right)=2, C_{\omega}\left(z_{3}\right) \neq 1 \\
& \text { 2. } C_{\omega}\left(z_{1}\right)=3 \Rightarrow C_{\omega}\left(z_{2}\right) \neq 1, C_{\omega}\left(z_{3}\right) \neq 1 \\
& \text { 3. } C_{\omega}\left(z_{2}\right)=1 \Rightarrow C_{\omega}\left(z_{1}\right)=1, C_{\omega}\left(z_{3}\right) \neq 2 \\
& \text { 4. } C_{\omega}\left(z_{2}\right)=3 \Rightarrow C_{\omega}\left(z_{1}\right)=3, C_{\omega}\left(z_{3}\right)=3 \\
& \text { 5. } C_{\omega}\left(z_{3}\right)=1 \Rightarrow C_{\omega}\left(z_{1}\right)=1, C_{\omega}\left(z_{2}\right)=1 \\
& \text { 6. } C_{\omega}\left(z_{3}\right)=2 \Rightarrow C_{\omega}\left(z_{2}\right)=2
\end{aligned}
$$

Generalization of LATE: Multivalued IV

- Then we derive the following choice rule

Lemma L-1 Pinto (2015)
If preferences are rational, under Assumption A-1 and A-2:

$$
\begin{aligned}
& \text { 1. } C_{\omega}\left(z_{1}\right)=2 \Rightarrow C_{\omega}\left(z_{2}\right)=2, C_{\omega}\left(z_{3}\right) \neq 1 \\
& \text { 2. } C_{\omega}\left(z_{1}\right)=3 \Rightarrow C_{\omega}\left(z_{2}\right) \neq 1, C_{\omega}\left(z_{3}\right) \neq 1 \\
& \text { 3. } C_{\omega}\left(z_{2}\right)=1 \Rightarrow C_{\omega}\left(z_{1}\right)=1, C_{\omega}\left(z_{3}\right) \neq 2 \\
& \text { 4. } C_{\omega}\left(z_{2}\right)=3 \Rightarrow C_{\omega}\left(z_{1}\right)=3, C_{\omega}\left(z_{3}\right)=3 \\
& \text { 5. } C_{\omega}\left(z_{3}\right)=1 \Rightarrow C_{\omega}\left(z_{1}\right)=1, C_{\omega}\left(z_{2}\right)=1 \\
& \text { 6. } C_{\omega}\left(z_{3}\right)=2 \Rightarrow C_{\omega}\left(z_{2}\right)=2
\end{aligned}
$$

■ Test yourself, explain all these six inequalities

Generalization of LATE: Multivalued IV

Generalization of LATE: Multivalued IV

- We further assume that neighborhood is a normal good

```
Assumption A-3 Pinto (2015)
For each family }\omega\mathrm{ , and for z, z }\in{\mp@subsup{z}{1}{},\mp@subsup{z}{2}{},\mp@subsup{z}{3}{}}\mathrm{ , if }\mp@subsup{C}{\omega}{}(z)=t\mathrm{ and }\mp@subsup{W}{\omega}{}(z,t)\mathrm{ is a proper
subset of }\mp@subsup{W}{\omega}{}(\mp@subsup{z}{}{\prime},t)\mathrm{ , then }\mp@subsup{C}{\omega}{}(\mp@subsup{z}{}{\prime})=
    - To eliminate cases like C}\mp@subsup{C}{\omega}{}(\mp@subsup{z}{1}{})=2,\mp@subsup{C}{\omega}{}(\mp@subsup{z}{2}{})=2,\mp@subsup{C}{\omega}{}(\mp@subsup{z}{3}{})=
    [ Using all above, we can eliminate the number of types from 27 to 7
    - Now you see the power of economic theory to guide your identification
    - When statistics tools are exhausted, remember you are an economist
    ■ Do not think first year Micro and Macro are useless!!!
```


Generalization of LATE: Multivalued IV

■ We further assume that neighborhood is a normal good
Assumption A-3 Pinto (2015)
For each family ω, and for $z, z^{\prime} \in\left\{z_{1}, z_{2}, z_{3}\right\}$, if $C_{\omega}(z)=t$ and $W_{\omega}(z, t)$ is a proper subset of $W_{\omega}\left(z^{\prime}, t\right)$, then $C_{\omega}\left(z^{\prime}\right)=t$

- To eliminate cases like $C_{\omega}\left(z_{1}\right)=2, C_{\omega}\left(z_{2}\right)=2, C_{\omega}\left(z_{3}\right)=3$
- Using all above, we can eliminate the number of types from 27 to 7
- Now you see the power of economic theory to guide your identification
- When statistics tools are exhausted, remember you are an economist

■ Do not think first year Micro and Macro are useless!!!

Generalization of LATE: Multivalued IV

■ We further assume that neighborhood is a normal good
Assumption A-3 Pinto (2015)
For each family ω, and for $z, z^{\prime} \in\left\{z_{1}, z_{2}, z_{3}\right\}$, if $C_{\omega}(z)=t$ and $W_{\omega}(z, t)$ is a proper subset of $W_{\omega}\left(z^{\prime}, t\right)$, then $C_{\omega}\left(z^{\prime}\right)=t$

- To eliminate cases like $C_{\omega}\left(z_{1}\right)=2, C_{\omega}\left(z_{2}\right)=2, C_{\omega}\left(z_{3}\right)=3$
- Using all above, we can eliminate the number of types from 27 to 7
- Now you see the power of economic theory to guide your identification

■ When statistics tools are exhausted, remember you are an economist

- Do not think first year Micro and Macro are useless!!!

Generalization of LATE: Multivalued IV

- We further assume that neighborhood is a normal good

Assumption A-3 Pinto (2015)

For each family ω, and for $z, z^{\prime} \in\left\{z_{1}, z_{2}, z_{3}\right\}$, if $C_{\omega}(z)=t$ and $W_{\omega}(z, t)$ is a proper subset of $W_{\omega}\left(z^{\prime}, t\right)$, then $C_{\omega}\left(z^{\prime}\right)=t$

- To eliminate cases like $C_{\omega}\left(z_{1}\right)=2, C_{\omega}\left(z_{2}\right)=2, C_{\omega}\left(z_{3}\right)=3$

■ Using all above, we can eliminate the number of types from 27 to 7

- Now you see the power of economic theory to guide your identification
- When statistics tools are exhausted, remember you are an economist
- Do not think first year Micro and Macro are useless!!!

Generalization of LATE: Multivalued IV

- We further assume that neighborhood is a normal good

Assumption A-3 Pinto (2015)

For each family ω, and for $z, z^{\prime} \in\left\{z_{1}, z_{2}, z_{3}\right\}$, if $C_{\omega}(z)=t$ and $W_{\omega}(z, t)$ is a proper subset of $W_{\omega}\left(z^{\prime}, t\right)$, then $C_{\omega}\left(z^{\prime}\right)=t$

- To eliminate cases like $C_{\omega}\left(z_{1}\right)=2, C_{\omega}\left(z_{2}\right)=2, C_{\omega}\left(z_{3}\right)=3$

■ Using all above, we can eliminate the number of types from 27 to 7
■ Now you see the power of economic theory to guide your identification

- When statistics tools are exhausted, remember you are an economist

■ Do not think first year Micro and Macro are useless!!!

Generalization of LATE: Multivalued IV

■ We further assume that neighborhood is a normal good

Assumption A-3 Pinto (2015)

For each family ω, and for $z, z^{\prime} \in\left\{z_{1}, z_{2}, z_{3}\right\}$, if $C_{\omega}(z)=t$ and $W_{\omega}(z, t)$ is a proper subset of $W_{\omega}\left(z^{\prime}, t\right)$, then $C_{\omega}\left(z^{\prime}\right)=t$

■ To eliminate cases like $C_{\omega}\left(z_{1}\right)=2, C_{\omega}\left(z_{2}\right)=2, C_{\omega}\left(z_{3}\right)=3$
■ Using all above, we can eliminate the number of types from 27 to 7
■ Now you see the power of economic theory to guide your identification
■ When statistics tools are exhausted, remember you are an economist
■ Do not think first year Micro and Macro are useless!!!

Generalization of LATE: Multivalued IV

■ We further assume that neighborhood is a normal good

Assumption A-3 Pinto (2015)

For each family ω, and for $z, z^{\prime} \in\left\{z_{1}, z_{2}, z_{3}\right\}$, if $C_{\omega}(z)=t$ and $W_{\omega}(z, t)$ is a proper subset of $W_{\omega}\left(z^{\prime}, t\right)$, then $C_{\omega}\left(z^{\prime}\right)=t$

- To eliminate cases like $C_{\omega}\left(z_{1}\right)=2, C_{\omega}\left(z_{2}\right)=2, C_{\omega}\left(z_{3}\right)=3$

■ Using all above, we can eliminate the number of types from 27 to 7
■ Now you see the power of economic theory to guide your identification
■ When statistics tools are exhausted, remember you are an economist
■ Do not think first year Micro and Macro are useless!!!

MTE: Choice Model

MTE: Choice Model

- Now we go to the second part, how to improve the external validity
- The reason why LATE is lack of external validity is because it is defined on a policy-specific ex post group

■ Not some ex ante group, for example a group of high-skilled workers

- Grouping by post-determined behavior, but not pre-determined characteristics
- This ex post group will change when policy environment changes

MTE: Choice Model

- Now we go to the second part, how to improve the external validity
- The reason why LATE is lack of external validity is because it is defined on a policy-specific ex post group
- Not some ex ante group, for example a group of high-skilled workers

■ Grouping by post-determined behavior, but not pre-determined characteristics

- This ex post group will change when policy environment changes

MTE: Choice Model

- Now we go to the second part, how to improve the external validity
- The reason why LATE is lack of external validity is because it is defined on a policy-specific ex post group
■ Not some ex ante group, for example a group of high-skilled workers
- Grouping by post-determined behavior, but not pre-determined characteristics
- This ex post group will change when policy environment changes

MTE: Choice Model

■ Now we go to the second part, how to improve the external validity

- The reason why LATE is lack of external validity is because it is defined on a policy-specific ex post group
■ Not some ex ante group, for example a group of high-skilled workers
- Grouping by post-determined behavior, but not pre-determined characteristics
- This ex post group will change when policy environment changes

MTE: Choice Model

- Now we go to the second part, how to improve the external validity
- The reason why LATE is lack of external validity is because it is defined on a policy-specific ex post group
■ Not some ex ante group, for example a group of high-skilled workers
■ Grouping by post-determined behavior, but not pre-determined characteristics
- This ex post group will change when policy environment changes

MTE: Choice Model

MTE: Choice Model

- Now let's explicitly construct a model for agents' compliance behavior
- In this model, we suppress subscript for individuals
- Let $j=0,1$ be the treatment, Y_{1}, Y_{0} be the potential outcomes

$$
\begin{align*}
& Y_{1}=\mu_{1}\left(X, U_{1}\right) \tag{4}\\
& Y_{0}=\mu_{0}\left(X, U_{0}\right) \tag{5}
\end{align*}
$$

- X is a set of control variables, U is unobserved factor on outcome

MTE: Choice Model

■ Now let's explicitly construct a model for agents' compliance behavior
■ In this model, we suppress subscript for individuals

- Let $j=0,1$ be the treatment, Y_{1}, Y_{0} be the potential outcomes

$$
\begin{aligned}
& Y_{1}=\mu_{1}\left(X, U_{1}\right) \\
& Y_{0}=\mu_{0}\left(X, U_{0}\right)
\end{aligned}
$$

- X is a set of control variables, U is unobserved factor on outcome

MTE: Choice Model

■ Now let's explicitly construct a model for agents' compliance behavior
■ In this model, we suppress subscript for individuals

- Let $j=0,1$ be the treatment, Y_{1}, Y_{0} be the potential outcomes

$$
\begin{align*}
& Y_{1}=\mu_{1}\left(X, U_{1}\right) \tag{4}\\
& Y_{0}=\mu_{0}\left(X, U_{0}\right) \tag{5}
\end{align*}
$$

- X is a set of control variables, U is unobserved factor on outcome

MTE: Choice Model

■ Now let's explicitly construct a model for agents' compliance behavior
■ In this model, we suppress subscript for individuals

- Let $j=0,1$ be the treatment, Y_{1}, Y_{0} be the potential outcomes

$$
\begin{align*}
& Y_{1}=\mu_{1}\left(X, U_{1}\right) \tag{4}\\
& Y_{0}=\mu_{0}\left(X, U_{0}\right) \tag{5}
\end{align*}
$$

■ X is a set of control variables, U is unobserved factor on outcome

MTE: Choice Model

MTE: Choice Model

- Let D denote the choice of treatment, determined by a latent index model

$$
\begin{equation*}
D^{*}=\mu_{D}(Z)-V, \quad D=1 \text { if } D^{*} \geq 0 ; D=0 \text { otherwise } \tag{6}
\end{equation*}
$$

- Z is an instrument that can change individual's choices, V is an unobserved factor
- For instance, Y is wage, D is college enrollment, Z is a policy to subsidize students from poor regions
- Agents observe everything. Econometricians observe (Z, X), but not ($\left.U_{0}, U_{1}, V\right)$

■ ($\left.U_{0}, U_{1}, V\right)$ can be correlated with each other

MTE: Choice Model

- Let D denote the choice of treatment, determined by a latent index model

$$
\begin{equation*}
D^{*}=\mu_{D}(Z)-V, \quad D=1 \text { if } D^{*} \geq 0 ; D=0 \text { otherwise } \tag{6}
\end{equation*}
$$

■ Z is an instrument that can change individual's choices, V is an unobserved factor

- For instance, Y is wage, D is college enrollment, Z is a policy to subsidize students from poor regions

■ Agents observe everything. Econometricians observe (Z, X), but not ($\left.U_{0}, U_{1}, V\right)$

- ($\left.U_{0}, U_{1}, V\right)$ can be correlated with each other

MTE: Choice Model

- Let D denote the choice of treatment, determined by a latent index model

$$
\begin{equation*}
D^{*}=\mu_{D}(Z)-V, \quad D=1 \text { if } D^{*} \geq 0 ; D=0 \text { otherwise } \tag{6}
\end{equation*}
$$

■ Z is an instrument that can change individual's choices, V is an unobserved factor

- For instance, Y is wage, D is college enrollment, Z is a policy to subsidize students from poor regions
- Agents observe everything. Econometricians observe (Z, X), but not ($\left.U_{0}, U_{1}, V\right)$

■ ($\left.U_{0}, U_{1}, V\right)$ can be correlated with each other

MTE: Choice Model

- Let D denote the choice of treatment, determined by a latent index model

$$
\begin{equation*}
D^{*}=\mu_{D}(Z)-V, \quad D=1 \text { if } D^{*} \geq 0 ; D=0 \text { otherwise } \tag{6}
\end{equation*}
$$

■ Z is an instrument that can change individual's choices, V is an unobserved factor

- For instance, Y is wage, D is college enrollment, Z is a policy to subsidize students from poor regions
■ Agents observe everything. Econometricians observe (Z, X), but not $\left(U_{0}, U_{1}, V\right)$ - ($\left.U_{0}, U_{1}, V\right)$ can be correlated with each other

MTE: Choice Model

- Let D denote the choice of treatment, determined by a latent index model

$$
\begin{equation*}
D^{*}=\mu_{D}(Z)-V, \quad D=1 \text { if } D^{*} \geq 0 ; D=0 \text { otherwise } \tag{6}
\end{equation*}
$$

■ Z is an instrument that can change individual's choices, V is an unobserved factor

- For instance, Y is wage, D is college enrollment, Z is a policy to subsidize students from poor regions
■ Agents observe everything. Econometricians observe (Z, X), but not $\left(U_{0}, U_{1}, V\right)$
- ($\left.U_{0}, U_{1}, V\right)$ can be correlated with each other

MTE: Choice Model

MTE: Choice Model

- We invoke five assumptions for this model
- (A-1) $\left(U_{0}, U_{1}, V\right)$ are independent of Z conditional on X Independence
■ (A-2) $\mu_{D}(Z)$ is nondegenerate conditional on X
Z contain at least one element not in X
- (A-1) and (A-2) assure the existence of the instrument
- (A-3) The distribution of V is continuous
- (A-4) $E\left(\left|Y_{1}\right|\right), E\left(\left|Y_{0}\right|\right)$ are finite
- (A-5) $0<\operatorname{Pr}(D=1 \mid X)<1$ Possible to have $D=1$ or $D=0$ at any point of X

MTE: Choice Model

- We invoke five assumptions for this model
- (A-1) $\left(U_{0}, U_{1}, V\right)$ are independent of Z conditional on X Independence
- (A-2) $\mu_{D}(Z)$ is nondegenerate conditional on X
Z contain at least one element not in X
- (A-1) and (A-2) assure the existence of the instrument
- (A-3) The distribution of V is continuous
- (A-4) $E\left(\left|Y_{1}\right|\right), E\left(\left|Y_{0}\right|\right)$ are finite
- (A-5) $0<\operatorname{Pr}(D=1 \mid X)<1$ Possible to have $D=1$ or $D=0$ at any point of X

MTE: Choice Model

- We invoke five assumptions for this model
- (A-1) $\left(U_{0}, U_{1}, V\right)$ are independent of Z conditional on X Independence
■ (A-2) $\mu_{D}(Z)$ is nondegenerate conditional on X Z contain at least one element not in X
- (A-1) and (A-2) assure the existence of the instrument
- (A-3) The distribution of V is continuous
- (A-4) $E\left(\left|Y_{1}\right|\right), E\left(\left|Y_{0}\right|\right)$ are finite
- $(\mathrm{A}-5) 0<\operatorname{Pr}(\mathrm{D}=1 \mid X)<1$ Possible to have $D=1$ or $D=0$ at any point of X

MTE: Choice Model

- We invoke five assumptions for this model
- (A-1) $\left(U_{0}, U_{1}, V\right)$ are independent of Z conditional on X Independence

■ (A-2) $\mu_{D}(Z)$ is nondegenerate conditional on X Z contain at least one element not in X

- (A-1) and (A-2) assure the existence of the instrument
- (A-3) The distribution of V is continuous
- (A-4) $E\left(\left|Y_{1}\right|\right), E\left(\left|Y_{0}\right|\right)$ are finite
- $(\mathrm{A}-5) 0<\operatorname{Pr}(D=1 \mid X)<1$ Possible to have $D=1$ or $D=0$ at any point of X

MTE: Choice Model

- We invoke five assumptions for this model
- (A-1) $\left(U_{0}, U_{1}, V\right)$ are independent of Z conditional on X Independence

■ (A-2) $\mu_{D}(Z)$ is nondegenerate conditional on X Z contain at least one element not in X

- (A-1) and (A-2) assure the existence of the instrument
- (A-3) The distribution of V is continuous
- (A-4) $E\left(\left|Y_{1}\right|\right), E\left(\left|Y_{0}\right|\right)$ are finite
- (A-5) $0<\operatorname{Pr}(D=1 \mid X)<1$ Possible to have $D=1$ or $D=0$ at any point of X

MTE: Choice Model

- We invoke five assumptions for this model
- (A-1) $\left(U_{0}, U_{1}, V\right)$ are independent of Z conditional on X Independence
- (A-2) $\mu_{D}(Z)$ is nondegenerate conditional on X Z contain at least one element not in X
- (A-1) and (A-2) assure the existence of the instrument
- (A-3) The distribution of V is continuous
- (A-4) $E\left(\left|Y_{1}\right|\right), E\left(\left|Y_{0}\right|\right)$ are finite
- $(\mathrm{A}-5) 0<\operatorname{Pr}(\mathrm{D}=1 \mid X)<1$ Possible to have $D=1$ or $D=0$ at any point of X

MTE: Choice Model

- We invoke five assumptions for this model
- (A-1) $\left(U_{0}, U_{1}, V\right)$ are independent of Z conditional on X Independence
- (A-2) $\mu_{D}(Z)$ is nondegenerate conditional on X Z contain at least one element not in X
- (A-1) and (A-2) assure the existence of the instrument
- (A-3) The distribution of V is continuous
- (A-4) $E\left(\left|Y_{1}\right|\right), E\left(\left|Y_{0}\right|\right)$ are finite
- (A-5) $0<\operatorname{Pr}(D=1 \mid X)<1$ Possible to have $D=1$ or $D=0$ at any point of X

MTE: Choice Model

MTE: Choice Model

- An example of this model setting is the Roy Model (sorting model)
- We have two sectors 0 and 1
- Y is working payoff, there is relative working cost $C=Z_{1}+V_{C}$ in sector $1, Z_{1}$ is observed and V_{C} is unobserved
- Agents choose a sector with higher payoff (abstract from cost)
- The unobserved term in treatment function is positively correlated with unobserved treatment return \Rightarrow Positive sorting
- People with higher return sort into treatment

MTE: Choice Model

- An example of this model setting is the Roy Model (sorting model)
- We have two sectors 0 and 1
- Y is working payoff, there is relative working cost $C=Z_{1}+V_{C}$ in sector $1, Z_{1}$ is observed and V_{C} is unobserved
= Agents choose a sector with higher payoff (abstract from cost)
- The unobserved term in treatment function is positively correlated with unobserved treatment return \Rightarrow Positive sorting
- People with higher return sort into treatment

MTE: Choice Model

- An example of this model setting is the Roy Model (sorting model)
- We have two sectors 0 and 1
- Y is working payoff, there is relative working $\operatorname{cost} C=Z_{1}+V_{C}$ in sector $1, Z_{1}$ is observed and V_{C} is unobserved
- Agents choose a sector with higher payoff (abstract from cost)
- The unobserved term in treatment function is positively correlated with unobserved treatment return \Rightarrow Positive sorting
- People with higher return sort into treatment

MTE: Choice Model

- An example of this model setting is the Roy Model (sorting model)
- We have two sectors 0 and 1
- Y is working payoff, there is relative working $\operatorname{cost} C=Z_{1}+V_{C}$ in sector $1, Z_{1}$ is observed and V_{C} is unobserved
- Agents choose a sector with higher payoff (abstract from cost)
- The unobserved term in treatment function is positively correlated with unobserved treatment return \Rightarrow Positive sorting
- People with higher return sort into treatment

MTE: Choice Model

- An example of this model setting is the Roy Model (sorting model)
- We have two sectors 0 and 1
- Y is working payoff, there is relative working $\operatorname{cost} C=Z_{1}+V_{C}$ in sector $1, Z_{1}$ is observed and V_{C} is unobserved
- Agents choose a sector with higher payoff (abstract from cost)
- The unobserved term in treatment function is positively correlated with unobserved treatment return \Rightarrow Positive sorting
- People with higher return sort into treatment

MTE: Choice Model

- An example of this model setting is the Roy Model (sorting model)
- We have two sectors 0 and 1
- Y is working payoff, there is relative working $\operatorname{cost} C=Z_{1}+V_{C}$ in sector $1, Z_{1}$ is observed and V_{C} is unobserved
- Agents choose a sector with higher payoff (abstract from cost)

■ The unobserved term in treatment function is positively correlated with unobserved treatment return \Rightarrow Positive sorting
■ People with higher return sort into treatment

MTE: Choice Model

MTE: Choice Model

■ Assume μ additively separable in U

$$
\begin{aligned}
Y_{1} & =\mu_{1}(X)+U_{1} \\
Y_{0} & =\mu_{0}(X)+U_{0} \\
D^{*} & =\mu_{1}(X)+U_{1}-\left[\mu_{0}(X)+U_{0}\right]-Z_{1}-V_{C}, \quad D=1 \text { if } D^{*} \geq 0 ; D=0 \text { otherwise }
\end{aligned}
$$

- In this case, we have $V=-\left[U_{1}-U_{0}-V_{C}\right]$

■ Positive sorting: $\operatorname{Cov}\left(U_{1}-U_{0}, U_{1}-U_{0}-V_{C}\right)>0$

MTE: Choice Model

■ Assume μ additively separable in U

$$
\begin{aligned}
Y_{1} & =\mu_{1}(X)+U_{1} \\
Y_{0} & =\mu_{0}(X)+U_{0} \\
D^{*} & =\mu_{1}(X)+U_{1}-\left[\mu_{0}(X)+U_{0}\right]-Z_{1}-V_{C}, \quad D=1 \text { if } D^{*} \geq 0 ; D=0 \text { otherwise }
\end{aligned}
$$

■ In this case, we have $V=-\left[U_{1}-U_{0}-V_{C}\right]$

- Positive sorting: $\operatorname{Cov}\left(U_{1}-U_{0}, U_{1}-U_{0}-V_{C}\right)>0$

MTE: Choice Model

■ Assume μ additively separable in U

$$
\begin{aligned}
Y_{1} & =\mu_{1}(X)+U_{1} \\
Y_{0} & =\mu_{0}(X)+U_{0} \\
D^{*} & =\mu_{1}(X)+U_{1}-\left[\mu_{0}(X)+U_{0}\right]-Z_{1}-V_{C}, \quad D=1 \text { if } D^{*} \geq 0 ; D=0 \text { otherwise }
\end{aligned}
$$

■ In this case, we have $V=-\left[U_{1}-U_{0}-V_{C}\right]$
■ Positive sorting: $\operatorname{Cov}\left(U_{1}-U_{0}, U_{1}-U_{0}-V_{C}\right)>0$

MTE: Choice Model

MTE: Choice Model

- Let $P(Z \mid X) \equiv \operatorname{Pr}(D=1 \mid Z, X)=F_{V \mid X}\left(\mu_{D}(Z)\right)$
$F_{V \mid X}(\cdot)$ denotes the distribution of V conditional on X
- This is the propensity score to get treated for agent with Z
- Let $U_{D}=F_{V \mid X}(V)$, we have $U_{D} \sim \operatorname{Unif}[0,1]$
- $F_{\text {YIX }}(V)$ means the threshold propensity score the agent has to pass to get treated when he/she draws V

■ Agent has to have an instrument Z which give him/her a propensity score $F_{V \mid X}\left(\mu_{D}(Z)\right)>F_{V \mid X}(V)=U_{D}$ (larger than this threshold) to get treated

- We have a clear one-to-one mapping between V and U_{D}
- Thus, for a choice function, an agent can be characterized by (X, V) or $\left(X, U_{D}\right)$

MTE: Choice Model

- Let $P(Z \mid X) \equiv \operatorname{Pr}(D=1 \mid Z, X)=F_{V \mid X}\left(\mu_{D}(Z)\right)$
$F_{V \mid X}(\cdot)$ denotes the distribution of V conditional on X
- This is the propensity score to get treated for agent with Z
- Let $U_{D}=F_{V \mid X}(V)$, we have $U_{D} \sim \operatorname{Unif}[0,1]$
- $F_{V \mid X}(V)$ means the threshold propensity score the agent has to pass to get treated when he/she draws V
- Agent has to have an instrument Z which give him/her a propensity score $F_{V \mid X}\left(\mu_{D}(Z)\right)>F_{V \mid X}(V)=U_{D}$ (larger than this threshold) to get treated
- We have a clear one-to-one mapping between V and U_{D}
- Thus, for a choice function, an agent can be characterized by (X, V) or $\left(X, U_{D}\right)$

MTE: Choice Model

- Let $P(Z \mid X) \equiv \operatorname{Pr}(D=1 \mid Z, X)=F_{V \mid X}\left(\mu_{D}(Z)\right)$
$F_{V \mid X}(\cdot)$ denotes the distribution of V conditional on X
- This is the propensity score to get treated for agent with Z
- Let $U_{D}=F_{V \mid X}(V)$, we have $U_{D} \sim \operatorname{Unif}[0,1]$
- $F_{V \mid X}(V)$ means the threshold propensity score the agent has to pass to get treated when he/she draws V
- Agent has to have an instrument Z which give him/her a propensity score $F_{V \mid X}\left(\mu_{D}(Z)\right)>F_{V \mid X}(V)=U_{D}$ (larger than this threshold) to get treated
- We have a clear one-to-one mapping between V and U_{D}
- Thus, for a choice function, an agent can be characterized by (X, V) or $\left(X, U_{D}\right)$

MTE: Choice Model

- Let $P(Z \mid X) \equiv \operatorname{Pr}(D=1 \mid Z, X)=F_{V \mid X}\left(\mu_{D}(Z)\right)$
$F_{V \mid X}(\cdot)$ denotes the distribution of V conditional on X
- This is the propensity score to get treated for agent with Z

■ Let $U_{D}=F_{V \mid X}(V)$, we have $U_{D} \sim \operatorname{Unif}[0,1]$

- $F_{V \mid X}(V)$ means the threshold propensity score the agent has to pass to get treated when he/she draws V
- Agent has to have an instrument Z which give him/her a propensity score $F_{V \mid X}\left(\mu_{D}(Z)\right)>F_{V \mid X}(V)=U_{D}$ (larger than this threshold) to get treated
- We have a clear one-to-one manning between V and U_{D}
- Thus, for a choice function, an agent can be characterized by (X, V) or $\left(X, U_{D}\right)$

MTE: Choice Model

- Let $P(Z \mid X) \equiv \operatorname{Pr}(D=1 \mid Z, X)=F_{V \mid X}\left(\mu_{D}(Z)\right)$
$F_{V \mid X}(\cdot)$ denotes the distribution of V conditional on X
- This is the propensity score to get treated for agent with Z

■ Let $U_{D}=F_{V \mid X}(V)$, we have $U_{D} \sim \operatorname{Unif}[0,1]$

- $F_{V \mid X}(V)$ means the threshold propensity score the agent has to pass to get treated when he/she draws V
- Agent has to have an instrument Z which give him/her a propensity score $F_{V \mid X}\left(\mu_{D}(Z)\right)>F_{V \mid X}(V)=U_{D}$ (larger than this threshold) to get treated
- We have a clear one-to-one mapping between V and U_{D}
- Thus, for a choice function, an agent can be characterized by (X, V) or $\left(X, U_{D}\right)$

MTE: Choice Model

- Let $P(Z \mid X) \equiv \operatorname{Pr}(D=1 \mid Z, X)=F_{V \mid X}\left(\mu_{D}(Z)\right)$
$F_{V \mid X}(\cdot)$ denotes the distribution of V conditional on X
- This is the propensity score to get treated for agent with Z

■ Let $U_{D}=F_{V \mid X}(V)$, we have $U_{D} \sim \operatorname{Unif}[0,1]$

- $F_{V \mid X}(V)$ means the threshold propensity score the agent has to pass to get treated when he/she draws V
■ Agent has to have an instrument Z which give him/her a propensity score $F_{V \mid X}\left(\mu_{D}(Z)\right)>F_{V \mid X}(V)=U_{D}$ (larger than this threshold) to get treated
■ We have a clear one-to-one mapping between V and U_{D}
- Thus, for a choice function, an agent can be characterized by (X, V) or $\left(X, U_{D}\right)$

MTE: Choice Model

- Let $P(Z \mid X) \equiv \operatorname{Pr}(D=1 \mid Z, X)=F_{V \mid X}\left(\mu_{D}(Z)\right)$
$F_{V \mid X}(\cdot)$ denotes the distribution of V conditional on X
- This is the propensity score to get treated for agent with Z

■ Let $U_{D}=F_{V \mid X}(V)$, we have $U_{D} \sim \operatorname{Unif}[0,1]$

- $F_{V \mid X}(V)$ means the threshold propensity score the agent has to pass to get treated when he/she draws V
■ Agent has to have an instrument Z which give him/her a propensity score $F_{V \mid X}\left(\mu_{D}(Z)\right)>F_{V \mid X}(V)=U_{D}$ (larger than this threshold) to get treated
■ We have a clear one-to-one mapping between V and U_{D}
■ Thus, for a choice function, an agent can be characterized by (X, V) or $\left(X, U_{D}\right)$

MTE: Choice Model

MTE: Choice Model

- Vytlacil (2002) proves that (A-1) to (A-5) in this additively separable selection model is equivalent to the LATE model of Imbens and Angrist (1994)
- The intuition is simple: V could not affect $\mu_{D}(Z)$

■ $D^{*}=\mu_{D}(Z)-V \Rightarrow$ additively separable for Z and V
■ Thus, given z and $z^{\prime}, \forall V \Rightarrow D^{*}(z) \geq D^{*}\left(z^{\prime}\right)$ or $D^{*}(z) \leq D^{*}\left(z^{\prime}\right)$

- This model explicitly describes the decision-making process in a structural way, which allows us to investigate more causal questions

MTE: Choice Model

■ Vytlacil (2002) proves that (A-1) to (A-5) in this additively separable selection model is equivalent to the LATE model of Imbens and Angrist (1994)

- The intuition is simple: V could not affect $\mu_{D}(Z)$
- $D^{*}=\mu_{D}(Z)-V \Rightarrow$ additively separable for Z and V
- Thus, given z and $z^{\prime}, \forall V \Rightarrow D^{*}(z) \geq D^{*}\left(z^{\prime}\right)$ or $D^{*}(z) \leq D^{*}\left(z^{\prime}\right)$
- This model explicitly describes the decision-making process in a structural way, which allows us to investigate more causal questions

MTE: Choice Model

- Vytlacil (2002) proves that (A-1) to (A-5) in this additively separable selection model is equivalent to the LATE model of Imbens and Angrist (1994)
- The intuition is simple: V could not affect $\mu_{D}(Z)$

■ $D^{*}=\mu_{D}(Z)-V \Rightarrow$ additively separable for Z and V

- This model explicitly describes the decision-making process in a structural way, which allows us to investigate more causal questions

MTE: Choice Model

- Vytlacil (2002) proves that (A-1) to (A-5) in this additively separable selection model is equivalent to the LATE model of Imbens and Angrist (1994)
- The intuition is simple: V could not affect $\mu_{D}(Z)$

■ $D^{*}=\mu_{D}(Z)-V \Rightarrow$ additively separable for Z and V

- Thus, given z and $z^{\prime}, \forall V \Rightarrow D^{*}(z) \geq D^{*}\left(z^{\prime}\right)$ or $D^{*}(z) \leq D^{*}\left(z^{\prime}\right)$
- This model explicitly describes the decision-making process in a structural way, which allows us to investigate more causal questions

MTE: Choice Model

- Vytlacil (2002) proves that (A-1) to (A-5) in this additively separable selection model is equivalent to the LATE model of Imbens and Angrist (1994)
- The intuition is simple: V could not affect $\mu_{D}(Z)$

■ $D^{*}=\mu_{D}(Z)-V \Rightarrow$ additively separable for Z and V

- Thus, given z and $z^{\prime}, \forall V \Rightarrow D^{*}(z) \geq D^{*}\left(z^{\prime}\right)$ or $D^{*}(z) \leq D^{*}\left(z^{\prime}\right)$
- This model explicitly describes the decision-making process in a structural way, which allows us to investigate more causal questions

MTE: Defining MTE

MTE: Defining MTE

- Now let's define ATE and MTE in this model
- Let $\Delta=Y_{1}-Y_{0}$
- ATE is defined as usual: $\Delta^{\text {ATE }}(x) \equiv E(\Delta \mid X=x)$
- MTE is defined as the mean effect of treatment on those for whom $X=x$ and $U_{D}=u_{D}(V=v)$

MTE: Defining MTE

- Now let's define ATE and MTE in this model
- Let $\Delta=Y_{1}-Y_{0}$
- ATE is defined as usual: $\Delta^{\text {ATE }}(x) \equiv E(\triangle \mid X=x)$
- MTE is defined as the mean effect of treatment on those for whom $X=x$ and $U_{D}=u_{D}(V=v)$

MTE: Defining MTE

■ Now let's define ATE and MTE in this model

- Let $\Delta=Y_{1}-Y_{0}$
- ATE is defined as usual: $\Delta^{A T E}(x) \equiv E(\Delta \mid X=x)$
- MTE is defined as the mean effect of treatment on those for whom $X=x$ and $U_{D}=u_{D}(V=v)$

MTE: Defining MTE

■ Now let's define ATE and MTE in this model

- Let $\Delta=Y_{1}-Y_{0}$
- ATE is defined as usual: $\Delta^{A T E}(x) \equiv E(\Delta \mid X=x)$

■ MTE is defined as the mean effect of treatment on those for whom $X=x$ and $U_{D}=u_{D}(V=v)$

Definition of the MTE

The Marginal Treatment Effect is defined as:

$$
\triangle^{M T E}\left(x, u_{D}\right) \equiv E\left(\triangle \mid x=x, U_{D}=u_{D}\right)
$$

MTE: Defining MTE

- Now let's define ATE and MTE in this model
- Let $\Delta=Y_{1}-Y_{0}$
- ATE is defined as usual: $\Delta^{A T E}(x) \equiv E(\Delta \mid X=x)$
- MTE is defined as the mean effect of treatment on those for whom $X=x$ and $U_{D}=u_{D}(V=v)$

Definition of the MTE

The Marginal Treatment Effect is defined as:

$$
\Delta^{M T E}\left(x, u_{D}\right) \equiv E\left(\Delta \mid X=x, U_{D}=u_{D}\right)
$$

MTE: Defining MTE

MTE: Defining MTE

- MTE is a mean treatment effect for a very specific group of people
- People with observed characteristics X and unobserved taste on treatment V
- People with observed characteristics X who would be indifferent between treatment or not if they were randomly assigned a value of $Z=z$ such that $P_{z}=u_{D}$
- That is why it is called "marginal" Marginal people who have just the threshold of u_{D}
- Different from LATE, it is not defined by any instrument in an ex post way
- This is a deep structural parameter that does not change when IV is changed
- Thus, it is externally valid

MTE: Defining MTE

- MTE is a mean treatment effect for a very specific group of people
- People with observed characteristics X and unobserved taste on treatment V
- People with observed characteristics X who would be indifferent between treatment or not if they were randomly assigned a value of $Z=z$ such that $P_{z}=u_{D}$
- That is why it is called "marginal"

Marginal people who have just the threshold of u_{D}

- Different from LATE, it is not defined by any instrument in an ex post way
- This is a deep structural parameter that does not change when IV is changed
- Thus, it is externally valid

MTE: Defining MTE

- MTE is a mean treatment effect for a very specific group of people
- People with observed characteristics X and unobserved taste on treatment V

■ People with observed characteristics X who would be indifferent between treatment or not if they were randomly assigned a value of $Z=z$ such that $P_{z}=u_{D}$

- That is why it is called "marginal" Marginal people who have just the threshold of u_{D}
- Different from LATE, it is not defined by any instrument in an ex post way
- This is a deep structural parameter that does not change when IV is changed
- Thus, it is externally valid

MTE: Defining MTE

- MTE is a mean treatment effect for a very specific group of people
- People with observed characteristics X and unobserved taste on treatment V

■ People with observed characteristics X who would be indifferent between treatment or not if they were randomly assigned a value of $Z=z$ such that $P_{z}=u_{D}$

- That is why it is called "marginal"

Marginal people who have just the threshold of u_{D}

- Different from LATE, it is not defined by any instrument in an ex post way
- This is a deep structural parameter that does not change when IV is changed
- Thus, it is externally valid

MTE: Defining MTE

- MTE is a mean treatment effect for a very specific group of people
- People with observed characteristics X and unobserved taste on treatment V

■ People with observed characteristics X who would be indifferent between treatment or not if they were randomly assigned a value of $Z=z$ such that $P_{z}=u_{D}$

- That is why it is called "marginal"

Marginal people who have just the threshold of u_{D}

- Different from LATE, it is not defined by any instrument in an ex post way
- This is a deep structural parameter that does not change when IV is changed
- Thus, it is externally valid

MTE: Defining MTE

- MTE is a mean treatment effect for a very specific group of people
- People with observed characteristics X and unobserved taste on treatment V

■ People with observed characteristics X who would be indifferent between treatment or not if they were randomly assigned a value of $Z=z$ such that $P_{z}=u_{D}$

- That is why it is called "marginal"

Marginal people who have just the threshold of u_{D}

- Different from LATE, it is not defined by any instrument in an ex post way
- This is a deep structural parameter that does not change when IV is changed
- Thus, it is externally valid

MTE: Defining MTE

- MTE is a mean treatment effect for a very specific group of people
- People with observed characteristics X and unobserved taste on treatment V

■ People with observed characteristics X who would be indifferent between treatment or not if they were randomly assigned a value of $Z=z$ such that $P_{z}=u_{D}$

- That is why it is called "marginal"

Marginal people who have just the threshold of u_{D}

- Different from LATE, it is not defined by any instrument in an ex post way
- This is a deep structural parameter that does not change when IV is changed

■ Thus, it is externally valid

MTE: Defining MTE

- Selection on MTE in a positive sorting Roy model

MTE: Defining MTE

- Selection on MTE in a positive sorting Roy model

MTE: MTE as a Framework

MTE: MTE as a Framework

■ We can prove that MTE is a general framework with various causal parameters as its special cases

- LATE can be written as a weighted average of MTE:

$$
\begin{aligned}
L A T E & =E\left(Y_{1}-Y_{0} \mid X=x, D(z)=1, D\left(z^{\prime}\right)=0\right) \\
& =E\left(Y_{1}-Y_{0} \mid X=x, u_{D}^{\prime}<U_{D} \leq u_{D}\right) \\
& =\int_{u_{D}^{\prime}}^{u_{D}} \Delta^{M T E}(x, u) d u
\end{aligned}
$$

- Here $u_{D}=\operatorname{Pr}(D(z)=1), u_{D}^{\prime}=\operatorname{Pr}\left(D\left(z^{\prime}\right)=1\right)$ are the threshold propensity scores for instrument $Z=z$ and $Z=z^{\prime}$
- We can interpret LATE as the average TE for people whose threshold is below z but above z^{\prime}

MTE: MTE as a Framework

- We can prove that MTE is a general framework with various causal parameters as its special cases
- LATE can be written as a weighted average of MTE:

$$
\begin{aligned}
L A T E & =E\left(Y_{1}-Y_{0} \mid X=x, D(z)=1, D\left(z^{\prime}\right)=0\right) \\
& =E\left(Y_{1}-Y_{0} \mid X=x, u_{D}^{\prime}<U_{D} \leq u_{D}\right) \\
& =\int_{u_{D}^{\prime}}^{u_{D}} \Delta^{M T E}(x, u) d u
\end{aligned}
$$

- Here $u_{D}=\operatorname{Pr}(D(z)=1), u_{D}^{\prime}=\operatorname{Pr}\left(D\left(z^{\prime}\right)=1\right)$ are the threshold propensity scores for instrument $Z=z$ and $Z=z^{\prime}$
- We can interpret LATE as the average TE for people whose threshold is below z but above z^{\prime}

MTE: MTE as a Framework

- We can prove that MTE is a general framework with various causal parameters as its special cases
- LATE can be written as a weighted average of MTE:

$$
\begin{aligned}
L A T E & =E\left(Y_{1}-Y_{0} \mid X=x, D(z)=1, D\left(z^{\prime}\right)=0\right) \\
& =E\left(Y_{1}-Y_{0} \mid X=x, u_{D}^{\prime}<U_{D} \leq u_{D}\right) \\
& =\int_{u_{D}^{\prime}}^{u_{D}} \Delta^{M T E}(x, u) d u
\end{aligned}
$$

- Here $u_{D}=\operatorname{Pr}(D(z)=1), u_{D}^{\prime}=\operatorname{Pr}\left(D\left(z^{\prime}\right)=1\right)$ are the threshold propensity scores for instrument $Z=z$ and $Z=z^{\prime}$
- We can interpret LATE as the average TE for people whose threshold is below z but above z

MTE: MTE as a Framework

- We can prove that MTE is a general framework with various causal parameters as its special cases
- LATE can be written as a weighted average of MTE:

$$
\begin{aligned}
L A T E & =E\left(Y_{1}-Y_{0} \mid X=x, D(z)=1, D\left(z^{\prime}\right)=0\right) \\
& =E\left(Y_{1}-Y_{0} \mid X=x, u_{D}^{\prime}<U_{D} \leq u_{D}\right) \\
& =\int_{u_{D}^{\prime}}^{u_{D}} \Delta^{M T E}(x, u) d u
\end{aligned}
$$

- Here $u_{D}=\operatorname{Pr}(D(z)=1), u_{D}^{\prime}=\operatorname{Pr}\left(D\left(z^{\prime}\right)=1\right)$ are the threshold propensity scores for instrument $Z=z$ and $Z=z^{\prime}$
- We can interpret LATE as the average TE for people whose threshold is below z but above z^{\prime}

MTE: MTE as a Framework

```
\(\operatorname{ATE}(x)=E\left(Y_{1}-Y_{0} \mid X=x\right)=\int_{0}^{1} \Delta^{\mathrm{MTE}_{\left(x, u_{D}\right)} d u_{D}}\)
\(\mathrm{TT}(x)=E\left(Y_{1}-Y_{0} \mid X=x, D=1\right)=\int_{0}^{1} \Delta^{\operatorname{MTE}}\left(x, u_{D}\right) \omega_{\mathrm{TT}}\left(x, u_{D}\right) d u_{D}\)
\(\operatorname{TUT}(x)=E\left(Y_{1}-Y_{0} \mid X=x, D=0\right)=\int_{0}^{1} \Delta^{\mathrm{MTE}}\left(x, u_{D}\right) \omega_{\mathrm{TUT}}\left(x, u_{D}\right) d u_{D}\)
Policy relevant treatment effect: \(\operatorname{PRTE}(x)=E\left(Y_{a^{\prime}} \mid X=x\right)-E\left(Y_{a} \mid X=x\right)=\)
\(\int_{0}^{1} \Delta^{\operatorname{MTE}}\left(x, u_{D}\right) \omega \operatorname{PRTE}\left(x, u_{D}\right) d u_{D}\) for two policies \(a\) and \(a^{\prime}\) that affect the \(Z\)
but not the \(X\)
\(\mathrm{IV}_{J}(x)=\int_{0}^{1} \Delta^{\mathrm{MTE}_{\left(x, u_{D}\right)} \omega_{\mathrm{IV}}^{J}\left(x, u_{D}\right) d u_{D}, \text { given instrument } J}\)
\(\operatorname{OLS}(x)=\int_{0}^{1} \Delta^{\mathrm{MTE}}\left(x, u_{D}\right) \omega_{\mathrm{OLS}}\left(x, u_{D}\right) d u_{D}\)
```

[^0]
MTE: MTE as a Framework

■ In general, we can express treatment parameter j by MTE as:

$$
T E(j)=\int_{0}^{1} \Delta^{M T E}\left(x, u_{D}\right) \omega_{j}\left(x, u_{D}\right) d u_{D}
$$

- ω_{j} is the weight for j

```
\(\operatorname{ATE}(x)=E\left(Y_{1}-Y_{0} \mid X=x\right)=\int_{0}^{1} \Delta^{\mathrm{MTE}}\left(x, u_{D}\right) d u_{D}\)
\(\mathrm{TT}(x)=E\left(Y_{1}-Y_{0} \mid X=x, D=1\right)=\int_{0}^{1} \Delta^{\operatorname{MTE}}\left(x, u_{D}\right) \omega_{\mathrm{TT}}\left(x, u_{D}\right) d u_{D}\)
\(\operatorname{TUT}(x)=E\left(Y_{1}-Y_{0} \mid X=x, D=0\right)=\int_{0}^{1} \Delta^{\operatorname{MTE}}\left(x, u_{D}\right) \omega_{\text {TUT }}\left(x, u_{D}\right) d u_{D}\)
Policy relevant treatment effect: \(\operatorname{PRTE}(x)=E\left(Y_{a^{\prime}} \mid X=x\right)-E\left(Y_{a} \mid X=x\right)=\)
\(\int_{0}^{1} \Delta^{\operatorname{MTE}}\left(x, u_{D}\right) \omega \operatorname{PRTE}\left(x, u_{D}\right) d u_{D}\) for two policies \(a\) and \(a^{\prime}\) that affect the \(Z\)
but not the \(X\)
\(\mathrm{IV}_{J}(x)=\int_{0}^{1} \Delta^{\mathrm{MTE}_{\left(x, u_{D}\right)} \omega_{\mathrm{IV}}^{J}\left(x, u_{D}\right) d u_{D}, \text { given instrument } J}\)
\(\operatorname{OLS}(x)=\int_{0}^{1} \Delta^{\mathrm{MTE}}\left(x, u_{D}\right) \omega_{\mathrm{OLS}}\left(x, u_{D}\right) d u_{D}\)
```

[^1]
MTE: MTE as a Framework

■ In general, we can express treatment parameter j by MTE as:

$$
T E(j)=\int_{0}^{1} \Delta^{M T E}\left(x, u_{D}\right) \omega_{j}\left(x, u_{D}\right) d u_{D}
$$

- ω_{j} is the weight for j

$$
\begin{aligned}
& \operatorname{ATE}(x)=E\left(Y_{1}-Y_{0} \mid X=x\right)=\int_{0}^{1} \Delta^{\operatorname{MTE}}\left(x, u_{D}\right) d u_{D} \\
& \operatorname{TT}(x)=E\left(Y_{1}-Y_{0} \mid X=x, D=1\right)=\int_{0}^{1} \Delta^{\operatorname{MTE}}\left(x, u_{D}\right) \omega_{\operatorname{TT}}\left(x, u_{D}\right) d u_{D} \\
& \operatorname{TUT}(x)=E\left(Y_{1}-Y_{0} \mid X=x, D=0\right)=\int_{0}^{1} \Delta^{\operatorname{MTE}}\left(x, u_{D}\right) \omega_{\operatorname{TUT}}\left(x, u_{D}\right) d u_{D} \\
& \text { Policy relevant treatment effect: PRTE }(x)=E\left(Y_{a^{\prime}} \mid X=x\right)-E\left(Y_{a} \mid X=x\right)= \\
& \int_{0}^{1} \Delta^{\operatorname{MTE}}\left(x, u_{D}\right) \omega_{\operatorname{PRTE}}\left(x, u_{D}\right) d u_{D} \text { for two policies } a \text { and } a^{\prime} \text { that affect the } Z \\
& \text { but not the } X \\
& \operatorname{IV}_{J}(x)=\int_{0}^{1} \Delta^{\operatorname{MTE}}\left(x, u_{D}\right) \omega_{\text {IV }}^{J}\left(x, u_{D}\right) d u_{D}, \text { given instrument } J \\
& \operatorname{OLS}(x)=\int_{0}^{1} \Delta^{\operatorname{MTE}}\left(x, u_{D}\right) \omega_{\mathrm{OLS}}\left(x, u_{D}\right) d u_{D}
\end{aligned}
$$

[^2]
MTE: Estimate MTE Using LIV

MTE: Estimate MTE Using LIV

■ Now we have defined MTE and shown that it is a general framework

- We suppress notation of conditional on x
- How to identify it? Local instrumental variable (LIV)
- LIV is the derivative of the conditional expection of Y w.r.t $P(Z)=p$

$$
\Delta^{L I V}(p) \equiv \frac{\partial E(Y \mid P(Z)=p)}{\partial p}
$$

- LIV is the mean response to a policy change embodied in changes in $P(Z)$
- A policy shock changes $Z \Rightarrow$ changes propensity score $P(Z) \Rightarrow$ changes outcome Y

MTE: Estimate MTE Using LIV

■ Now we have defined MTE and shown that it is a general framework

- We suppress notation of conditional on x
- How to identify it? Local instrumental variable (LIV)

■ LIV is the derivative of the conditional expection of Y w.r.t $P(Z)=p$:

- LIV is the mean response to a policy change embodied in changes in $P(Z)$
- A policy shock changes $Z \Rightarrow$ changes propensity score $P^{\prime}(Z) \Rightarrow$ changes outcome Y

MTE: Estimate MTE Using LIV

■ Now we have defined MTE and shown that it is a general framework

- We suppress notation of conditional on x

■ How to identify it? Local instrumental variable (LIV)

- LIV is the derivative of the conditional expection of Y w.r.t $P(Z)=p$.

- LIV is the mean response to a policy change embodied in changes in $P(Z)$
- A policy shock changes $Z \Rightarrow$ changes propensity score $P(Z) \Rightarrow$ changes outcome Y

MTE: Estimate MTE Using LIV

- Now we have defined MTE and shown that it is a general framework
- We suppress notation of conditional on x

■ How to identify it? Local instrumental variable (LIV)

- LIV is the derivative of the conditional expection of Y w.r.t $P(Z)=p$:

$$
\Delta^{L I V}(p) \equiv \frac{\partial E(Y \mid P(Z)=p)}{\partial p}
$$

- LIV is the mean response to a policy change embodied in changes in $P(Z)$
- A policy shock changes $Z \Rightarrow$ changes propensity score $P(Z) \Rightarrow$ changes outcome Y

MTE: Estimate MTE Using LIV

■ Now we have defined MTE and shown that it is a general framework

- We suppress notation of conditional on x

■ How to identify it? Local instrumental variable (LIV)

- LIV is the derivative of the conditional expection of Y w.r.t $P(Z)=p$:

$$
\Delta^{L I V}(p) \equiv \frac{\partial E(Y \mid P(Z)=p)}{\partial p}
$$

- LIV is the mean response to a policy change embodied in changes in $P(Z)$
- A policy shock changes $Z \Rightarrow$ changes propensity score $P(Z) \Rightarrow$ changes outcome Y

MTE: Estimate MTE Using LIV

■ Now we have defined MTE and shown that it is a general framework

- We suppress notation of conditional on x

■ How to identify it? Local instrumental variable (LIV)
■ LIV is the derivative of the conditional expection of Y w.r.t $P(Z)=p$:

$$
\Delta^{L I V}(p) \equiv \frac{\partial E(Y \mid P(Z)=p)}{\partial p}
$$

- LIV is the mean response to a policy change embodied in changes in $P(Z)$

■ A policy shock changes $Z \Rightarrow$ changes propensity score $P(Z) \Rightarrow$ changes outcome Y

MTE: Estimate MTE Using LIV

MTE: Estimate MTE Using LIV

- Under A1-A5, we can show that

$$
\Delta^{M T E}(p)=\Delta^{L I V}(p)=\frac{\partial E(Y \mid P(Z)=p)}{\partial p}
$$

- For MTE at any propensity threshold p, we can use LIV at this point to identify it
- What is the intuition?

■ MTE at a threshold means the causal effect on marginal people who would just change their treatment at this point of $P(z)=p$
■ LIV is the changes of outcome at this marginal point $P(Z)=p$ driven by an exogenous variation on instrument Z

MTE: Estimate MTE Using LIV

- Under A1-A5, we can show that

$$
\Delta^{M T E}(p)=\Delta^{L I V}(p)=\frac{\partial E(Y \mid P(Z)=p)}{\partial p}
$$

■ For MTE at any propensity threshold p, we can use LIV at this point to identify it

- What is the intuition?

■ MTE at a threshold means the causal effect on marginal people who would just change their treatment at this point of $P(z)=p$

- LIV is the changes of outcome at this marginal point $P(Z)=p$ driven by an exogenous variation on instrument Z

MTE: Estimate MTE Using LIV

- Under A1-A5, we can show that

$$
\Delta^{M T E}(p)=\Delta^{L I V}(p)=\frac{\partial E(Y \mid P(Z)=p)}{\partial p}
$$

■ For MTE at any propensity threshold p, we can use LIV at this point to identify it

- What is the intuition?
- MTE at a threshold means the causal effect on marginal people who would just change their treatment at this point of $P(z)=p$
■ LIV is the changes of outcome at this marginal point $P(Z)=p$ driven by an exogenous variation on instrument Z

MTE: Estimate MTE Using LIV

- Under A1-A5, we can show that

$$
\Delta^{M T E}(p)=\Delta^{L I V}(p)=\frac{\partial E(Y \mid P(Z)=p)}{\partial p}
$$

■ For MTE at any propensity threshold p, we can use LIV at this point to identify it

- What is the intuition?

■ MTE at a threshold means the causal effect on marginal people who would just change their treatment at this point of $P(z)=p$

- LIV is the changes of outcome at this marginal point $P(Z)=p$ driven by an exogenous variation on instrument Z

MTE: Estimate MTE Using LIV

- Under A1-A5, we can show that

$$
\Delta^{M T E}(p)=\Delta^{L I V}(p)=\frac{\partial E(Y \mid P(Z)=p)}{\partial p}
$$

■ For MTE at any propensity threshold p, we can use LIV at this point to identify it

- What is the intuition?

■ MTE at a threshold means the causal effect on marginal people who would just change their treatment at this point of $P(z)=p$
■ LIV is the changes of outcome at this marginal point $P(Z)=p$ driven by an exogenous variation on instrument Z

MTE: Estimate MTE Using LIV

MTE: Estimate MTE Using LIV

- Then the question becomes how to estimate LIV?
- First, assume a treatment choice function (Probit or logit), find propensity score function $p(z)$
- Second, estimate outcome Y given control X and propensity score function $p(z)$ Using non/semi-parametric methods such as local linear regression or partial linear regression
- Then estimate derivatives by small perturbation

Or it would be just the regression coefficient if you assume a linear model for Y

- Or we can estimate the whole model in a fully parametric way (Kline and Walters, 2016)

MTE: Estimate MTE Using LIV

- Then the question becomes how to estimate LIV?

■ First, assume a treatment choice function (Probit or logit), find propensity score function $p(z)$

- Second, estimate outcome Y given control X and propensity score function $p(z)$ Using non/semi-parametric methods such as local linear regression or partial linear regression
- Then estimate derivatives by small perturbation

Or it would be just the regression coefficient if you assume a linear model for Y

- Or we can estimate the whole model in a fully parametric way (Kline and Walters, 2016)

MTE: Estimate MTE Using LIV

- Then the question becomes how to estimate LIV?
- First, assume a treatment choice function (Probit or logit), find propensity score function $p(z)$
- Second, estimate outcome Y given control X and propensity score function $p(z)$ Using non/semi-parametric methods such as local linear regression or partial linear regression
- Then estimate derivatives by small perturbation

Or it would be just the regression coefficient if you assume a linear model for Y

- Or we can estimate the whole model in a fully narametric way (Kline and Walters, 2016)

MTE: Estimate MTE Using LIV

- Then the question becomes how to estimate LIV?
- First, assume a treatment choice function (Probit or logit), find propensity score function $p(z)$
- Second, estimate outcome Y given control X and propensity score function $p(z)$ Using non/semi-parametric methods such as local linear regression or partial linear regression
- Then estimate derivatives by small perturbation

Or it would be just the regression coefficient if you assume a linear model for Y

- Or we can estimate the whole model in a fully parametric way (Kline and Walters, 2016)

MTE: Estimate MTE Using LIV

- Then the question becomes how to estimate LIV?
- First, assume a treatment choice function (Probit or logit), find propensity score function $p(z)$
- Second, estimate outcome Y given control X and propensity score function $p(z)$ Using non/semi-parametric methods such as local linear regression or partial linear regression
- Then estimate derivatives by small perturbation Or it would be just the regression coefficient if you assume a linear model for Y
- Or we can estimate the whole model in a fully parametric way (Kline and Walters, 2016)

MTE: Estimate MTE Using LIV

MTE: Estimate MTE Using LIV

- Implementation: Stata package mtefe
- This package can give you estimations of various causal parameters
- And a full distribution of treatment effect
- There is a slides of user guidance by Martin Andresen

MTE: Estimate MTE Using LIV

- Implementation: Stata package mtefe
- This package can give you estimations of various causal parameters
- And a full distribution of treatment effect
- There is a slides of user guidance by Martin Andresen

MTE: Estimate MTE Using LIV

- Implementation: Stata package mtefe
- This package can give you estimations of various causal parameters
- And a full distribution of treatment effect
- There is a slides of user guidance by Martin Andresen

MTE: Estimate MTE Using LIV

- Implementation: Stata package mtefe
- This package can give you estimations of various causal parameters
- And a full distribution of treatment effect
- There is a slides of user guidance by Martin Andresen

MTE: Estimate MTE Using LIV

```Parametric normal MTE model Observations : 10000 Treatment model: Probit Estimation method: Local IV```						
lwage	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
beta0						
	. 0358398	. 0064408	5.56	0.000	. 0232145	. 0484651
exp2	-. 0008453	. 0002019	-4.19	0.000	-. 0012411	-. 0004496
district						
2	. 2352456	. 0680412	3.46	0.001	. 1018712	. 36862
3	. 6294914	. 0701091	8.98	0.000	. 4920634	. 7669194
4	. 0131179	. 0597721	0.22	0.826	-. 1040474	. 1302832
5	. 0338606	. 0705835	0.48	0.631	-. 1044974	. 1722186
6	. 1699366	. 0605086	2.81	0.005	. 0513275	. 2885458
7	-. 1899241	. 060115	-3.16	0.002	-. 3077617	-. 0720865
8	-. 1842254	. 0676843	-2.72	0.007	-. 3169003	-. 0515504
9	-. 7908301	. 0578436	-13.67	0.000	-. 9042153	-. 677445
10	-. 4432749	. 0597237	-7.42	0.000	-. 5603455	-. 3262044
_cons	3.164706	. 0650331	48.66	0.000	3.037228	3.292184
beta1-beta 0						

## MTE: Estimate MTE Using LIV

$\begin{array}{r} \exp \\ \exp 2 \end{array}$	$\begin{array}{r} -.0386384 \\ .0012967 \end{array}$	$\begin{array}{r} .010241 \\ .0003288 \end{array}$	$\begin{array}{r} -3.77 \\ 3.94 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{array}{r} -.0587128 \\ .0006523 \end{array}$	$\begin{aligned} & -.018564 \\ & .0019412 \end{aligned}$
district						
(output omitted)						
_cons	. 4255863	. 0983572	4.33	0.000	.2327863	. 6183863
k mills	-. 4790282	. 0611081	-7.84	0.000	-. 5988124	-. 359244
effects						
ate	. 3283373	. 0242932	13.52	0.000	. 2807177	. 3759568
att	. 5369432	. 0388809	13.81	0.000	. 4607287	. 6131576
atut	. 1195067	. 0384691	3.11	0.002	. 0440995	. 194914
late	. 3279726	. 0245142	13.38	0.000	. 2799198	. 3760254
mprte1	. 3463148	. 0256971	13.48	0.000	. 2959433	. 3966862
mprte2	. 3309428	. 024298	13.62	0.000	.2833137	. 3785719
mprte3	-. 016257	. 0498984	-0.33	0.745	-. 1140679	. 0815538
Test of observable heterogeneity, p-value						0.0000
Test of essential heterogeneity, p-value						0.0000
Note: Analytic (output omitt	al standard ed)	rors igno	the f	s tha	propensi	score,

## MTE: Estimate MTE Using LIV



## MTE: Conclusion

## MTE: Conclusion

■ LATE is internally valid but not externally valid

- We can combine choice model with IV to have a new framework: MTE
- MTE measures the treatment effect for people with specific characteristics $X$ and some unobserved treatment taste $V$ (or treatment threshold $p$ )
- It is externally valid and not IV-specific
- Various causal parameters are special cases of weighted MTEs
- W/e can estimate it using IIV/ with non/semi/parametric methods
- It can be implemented using a Stata package


## MTE: Conclusion

■ LATE is internally valid but not externally valid
■ We can combine choice model with IV to have a new framework: MTE

- MTE measures the treatment effect for people with specific characteristics $X$ and some unobserved treatment taste $V$ (or treatment threshold $p$ )
- It is externally valid and not IV-specific
- Various causal parameters are special cases of weighted MTEs
- We can estimate it using LIV with non/semi/parametric methods
- It can be implemented using a Stata package


## MTE: Conclusion

■ LATE is internally valid but not externally valid
■ We can combine choice model with IV to have a new framework: MTE
■ MTE measures the treatment effect for people with specific characteristics $X$ and some unobserved treatment taste $V$ (or treatment threshold $p$ )

- It is externally valid and not IV-specific
- Various causal parameters are special cases of weighted MTEs
- M/e can estimate it using IIV/ with non/semi/parametric methods
- It can be implemented using a Stata package


## MTE: Conclusion

■ LATE is internally valid but not externally valid
■ We can combine choice model with IV to have a new framework: MTE
■ MTE measures the treatment effect for people with specific characteristics $X$ and some unobserved treatment taste $V$ (or treatment threshold $p$ )

- It is externally valid and not IV-specific
- Various causal parameters are special cases of weighted MTEs
- We can estimate it using LIV with non/semi/parametric methods
- It can be implemented using a Stata package


## MTE: Conclusion

■ LATE is internally valid but not externally valid
■ We can combine choice model with IV to have a new framework: MTE
■ MTE measures the treatment effect for people with specific characteristics $X$ and some unobserved treatment taste $V$ (or treatment threshold $p$ )
■ It is externally valid and not IV-specific
■ Various causal parameters are special cases of weighted MTEs

- We can estimate it using LIV with non/semi/parametric methods
- It can be implemented using a Stata package


## MTE: Conclusion

■ LATE is internally valid but not externally valid
■ We can combine choice model with IV to have a new framework: MTE
■ MTE measures the treatment effect for people with specific characteristics $X$ and some unobserved treatment taste $V$ (or treatment threshold $p$ )

- It is externally valid and not IV-specific

■ Various causal parameters are special cases of weighted MTEs

- We can estimate it using LIV with non/semi/parametric methods
- It can be implemented using a Stata package


## MTE: Conclusion

■ LATE is internally valid but not externally valid
■ We can combine choice model with IV to have a new framework: MTE
■ MTE measures the treatment effect for people with specific characteristics $X$ and some unobserved treatment taste $V$ (or treatment threshold $p$ )

- It is externally valid and not IV-specific

■ Various causal parameters are special cases of weighted MTEs
■ We can estimate it using LIV with non/semi/parametric methods
■ It can be implemented using a Stata package

Application: Kline and Walters (2016)

## Application: Kline and Walters (2016)

- We illustrate the method we learn today by reading Kline and Walters (2016)
- This paper is so interesting and insightful
- Reading one paper like this carefully, is much better than reading 100 reg monkey papers (for these, you can just read the abstracts)
- It investigates the cost-benefit analysis for social programs when some close substitutes exist


## Application: Kline and Walters (2016)

- We illustrate the method we learn today by reading Kline and Walters (2016)
- This paper is so interesting and insightful
- Reading one paper like this carefully, is much better than reading 100 reg monkey papers (for these, you can just read the abstracts)
- It investigates the cost-benefit analysis for social programs when some close substitutes exist


## Application: Kline and Walters (2016)

- We illustrate the method we learn today by reading Kline and Walters (2016)
- This paper is so interesting and insightful

■ Reading one paper like this carefully, is much better than reading 100 reg monkey papers (for these, you can just read the abstracts)

- It investigates the cost-benefit analysis for social programs when some close substitutes exist


## Application: Kline and Walters (2016)

- We illustrate the method we learn today by reading Kline and Walters (2016)
- This paper is so interesting and insightful

■ Reading one paper like this carefully, is much better than reading 100 reg monkey papers (for these, you can just read the abstracts)

- It investigates the cost-benefit analysis for social programs when some close substitutes exist


## Application: Kline and Walters (2016)

## Application: Kline and Walters (2016)

- Head Start (HS) is an early childhood education program provided for poor families in the U.S.
- People find large impact from observational studies, but small effect from RCT Does it mean that this HS is ineffective?
- Kline and Walters (2016) claim that it is not because observational studies are not well-designed
- Rather, it is because observational studies compare people enroll in HS and people do not enroll in any program
- Meanwhile, RCTs compare people enroll in HS and people do not enroll in HS But many other programs exist
- Peoole can actively sort into other programs


## Application: Kline and Walters (2016)

- Head Start (HS) is an early childhood education program provided for poor families in the U.S.

■ People find large impact from observational studies, but small effect from RCT. Does it mean that this HS is ineffective?

- Kline and Walters (2016) claim that it is not because observational studies are not well-designed
- Rather, it is because observational studies compare people enroll in HS and people do not enroll in any program
■ Meanwhile, RCTs compare people enroll in HS and people do not enroll in HS But many other programs exist
- People can actively sort into other programs


## Application: Kline and Walters (2016)

- Head Start (HS) is an early childhood education program provided for poor families in the U.S.
- People find large impact from observational studies, but small effect from RCT. Does it mean that this HS is ineffective?
- Kline and Walters (2016) claim that it is not because observational studies are not well-designed
- Rather, it is because observational studies compare people enroll in HS and people do not enroll in any program
- Meanwhile, RCTs compare people enroll in HS and people do not enroll in HS But many other programs exist
- People can actively sort into other programs


## Application: Kline and Walters (2016)

- Head Start (HS) is an early childhood education program provided for poor families in the U.S.
- People find large impact from observational studies, but small effect from RCT. Does it mean that this HS is ineffective?
- Kline and Walters (2016) claim that it is not because observational studies are not well-designed
- Rather, it is because observational studies compare people enroll in HS and people do not enroll in any program
- Meanwhile, RCTs compare people enroll in HS and people do not enroll in HS But many other programs exist
- People can actively sort into other programs


## Application: Kline and Walters (2016)

- Head Start (HS) is an early childhood education program provided for poor families in the U.S.
- People find large impact from observational studies, but small effect from RCT. Does it mean that this HS is ineffective?
- Kline and Walters (2016) claim that it is not because observational studies are not well-designed
- Rather, it is because observational studies compare people enroll in HS and people do not enroll in any program
- Meanwhile, RCTs compare people enroll in HS and people do not enroll in HS But many other programs exist
- People can actively sort into other programs


## Application: Kline and Walters (2016)

■ Head Start (HS) is an early childhood education program provided for poor families in the U.S.

- People find large impact from observational studies, but small effect from RCT. Does it mean that this HS is ineffective?
- Kline and Walters (2016) claim that it is not because observational studies are not well-designed
- Rather, it is because observational studies compare people enroll in HS and people do not enroll in any program
■ Meanwhile, RCTs compare people enroll in HS and people do not enroll in HS But many other programs exist
- People can actively sort into other programs

Application: Kline and Walters (2016)

## Application: Kline and Walters (2016)

■ The treatment actually has three values: no program, other program, HS program

- Kline and Walters (2016) first categorize people to all behavior types and use ARP to eliminate some of them
■ Then they varify various causal parameters needed for different evaluation targets
- Using these causal estimates, they implement new cost-benefit analysis
- Taking into consideration the gov's monetary savings when neople transfer from other programs to HS


## Application: Kline and Walters (2016)

■ The treatment actually has three values: no program, other program, HS program
■ Kline and Walters (2016) first categorize people to all behavior types and use ARP to eliminate some of them

- Then they varify various causal parameters needed for different evaluation targets
- Using these causal estimates, they implement new cost-benefit analysis
- Taking into consideration the gov's monetary savings when neople transfer from other programs to HS


## Application: Kline and Walters (2016)

- The treatment actually has three values: no program, other program, HS program

■ Kline and Walters (2016) first categorize people to all behavior types and use ARP to eliminate some of them
■ Then they varify various causal parameters needed for different evaluation targets

- ITT and LATE: not externally valid when the composition of compliers changes
- MTE: externally valid when the composition of compliers changes
- Using these causal estimates, they implement new cost-benefit analysis
- Taking into consideration the gov's monetary savings when people transfer from other programs to HS


## Application: Kline and Walters (2016)

- The treatment actually has three values: no program, other program, HS program
- Kline and Walters (2016) first categorize people to all behavior types and use ARP to eliminate some of them
- Then they varify various causal parameters needed for different evaluation targets
- ITT and LATE: not externally valid when the composition of compliers changes
- MTE: externally valid when the composition of compliers changes
- Using these causal estimates, they implement new cost-benefit analysis
- Taking into consideration the gov's monetary savings when people transfer from other programs to HS


## Application: Kline and Walters (2016)

- The treatment actually has three values: no program, other program, HS program
- Kline and Walters (2016) first categorize people to all behavior types and use ARP to eliminate some of them
- Then they varify various causal parameters needed for different evaluation targets
- ITT and LATE: not externally valid when the composition of compliers changes
- MTE: externally valid when the composition of compliers changes
- Using these causal estimates, they implement new cost-benefit analysis
- Taking into consideration the gov's monetary savings when people transfer from other programs to HS


## Application: Kline and Walters (2016)

■ The treatment actually has three values: no program, other program, HS program
■ Kline and Walters (2016) first categorize people to all behavior types and use ARP to eliminate some of them
■ Then they varify various causal parameters needed for different evaluation targets

- ITT and LATE: not externally valid when the composition of compliers changes
- MTE: externally valid when the composition of compliers changes

■ Using these causal estimates, they implement new cost-benefit analysis

- Taking into consideration the gov's monetary savings when people transfer from other programs to HS


## Application: Kline and Walters (2016)

- The treatment actually has three values: no program, other program, HS program

■ Kline and Walters (2016) first categorize people to all behavior types and use ARP to eliminate some of them
■ Then they varify various causal parameters needed for different evaluation targets

- ITT and LATE: not externally valid when the composition of compliers changes
- MTE: externally valid when the composition of compliers changes

■ Using these causal estimates, they implement new cost-benefit analysis

- Taking into consideration the gov's monetary savings when people transfer from other programs to HS


## Conclusion

## Conclusion

- LATE is the most popular way to interpret IV estimate
- However, it has two important limitations
- To fix these two issues, we need to go deep into the compliance (treatment selection) problem
- Treatment selection is intrinsically a part of IV, but not fully explored by pure design-based approach


## Conclusion

- LATE is the most popular way to interpret IV estimate
- However, it has two important limitations
- Usually not feasible when you have multivalued IV $\Rightarrow$ too many types
- Not externally valid when complier group changes
- To fix these two issues, we need to go deen into the compliance (treatment selection) problem
- Treatment selection is intrinsically a part of IV, but not fully explored by pure design-based approach


## Conclusion

- LATE is the most popular way to interpret IV estimate
- However, it has two important limitations
- Usually not feasible when you have multivalued IV $\Rightarrow$ too many types
- Not externally valid when complier group changes
- To fix these two issues, we need to go deep into the compliance (treatment selection) problem
- Treatment selection is intrinsically a part of IV, but not fully explored by pure design-based approach


## Conclusion

- LATE is the most popular way to interpret IV estimate
- However, it has two important limitations
- Usually not feasible when you have multivalued IV $\Rightarrow$ too many types
- Not externally valid when complier group changes
- To fix these two issues, we need to go deep into the compliance (treatment selection) problem
- Treatment selection is intrinsically a part of IV, but not fully explored by pure design-based approach


## Conclusion

■ LATE is the most popular way to interpret IV estimate

- However, it has two important limitations
- Usually not feasible when you have multivalued IV $\Rightarrow$ too many types
- Not externally valid when complier group changes
- To fix these two issues, we need to go deep into the compliance (treatment selection) problem
- Treatment selection is intrinsically a part of IV, but not fully explored by pure design-based approach


## Conclusion

■ LATE is the most popular way to interpret IV estimate

- However, it has two important limitations
- Usually not feasible when you have multivalued IV $\Rightarrow$ too many types
- Not externally valid when complier group changes
- To fix these two issues, we need to go deep into the compliance (treatment selection) problem
- Treatment selection is intrinsically a part of IV, but not fully explored by pure design-based approach


## Conclusion

## Conclusion

■ First, we use ARP and other reasonable economic assumptions to simplify the identification in complicated multivalued IV cases

- Second, we introduce MTE framework to deal with external validity issues
- MTE is the treatment effect of a small group of people with specific value of characteristics $X$ and treatment taste $V$ (or treatment threshold $U_{D}$ )
- It can be identified and estimated using LIV


## Conclusion

■ First, we use ARP and other reasonable economic assumptions to simplify the identification in complicated multivalued IV cases
■ Second, we introduce MTE framework to deal with external validity issues

- MTE is the treatment effect of a small group of people with specific value of characteristics $X$ and treatment taste $V$ (or treatment threshold $U_{D}$ )
- It can be identified and estimated using IIV


## Conclusion

■ First, we use ARP and other reasonable economic assumptions to simplify the identification in complicated multivalued IV cases
■ Second, we introduce MTE framework to deal with external validity issues

- MTE is the treatment effect of a small group of people with specific value of characteristics $X$ and treatment taste $V$ (or treatment threshold $U_{D}$ )
- It can be identified and estimated using LIV


## Conclusion

■ First, we use ARP and other reasonable economic assumptions to simplify the identification in complicated multivalued IV cases
■ Second, we introduce MTE framework to deal with external validity issues
■ MTE is the treatment effect of a small group of people with specific value of characteristics $X$ and treatment taste $V$ (or treatment threshold $U_{D}$ )

- It can be identified and estimated using LIV


## References

Heckman, James J and Edward J Vytlacil. 2007a. "Econometric Evaluation of Social Programs, Part I: Causal Models, Structural Models and Econometric Policy Evaluation." Handbook of Econometrics 6:4779-4874.
—__. 2007b. "Econometric Evaluation of Social Programs, Part II: Using the Marginal Treatment Effect to Organize Alternative Econometric Estimators to Evaluate Social Programs, and to Forecast Their Effects in New Environments." Handbook of Econometrics 6:4875-5143.
Imbens, Guido W and Joshua D Angrist. 1994. "Identification and Estimation of Local Average Treatment Effects." Econometrica 62 (2):467-475.
Kline, Patrick and Christopher R Walters. 2016. "Evaluating Public Programs with Close Substitutes: The Case of Head Start." The Quarterly Journal of Economics 131 (4):1795-1848.
Pinto, Rodrigo. 2015. "Selection Bias in a Controlled Experiment: The Case of Moving to Opportunity." Unpublished Ph. D. Thesis, University of Chicago, Department of Economics .
Vytlacil, Edward. 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result." Econometrica 70 (1):331-341.


[^0]:    Source: Heckman and Vytlacil (2005).

[^1]:    Source: Heckman and Vytlacil (2005).

[^2]:    Source: Heckman and Vytlacil (2005).

