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IV beyond LATE: Limitation of LATE

We have introduced LATE interpretation of IV

This is the most popular way to think of IV under heterogeneous treatment effect

It is elegant, policy-relevant, but also limited (Heckman and Vytlacil, 2007a,b)

It relies on binary treatment and binary IV
It is internally valid, but not externally valid

Complier group is policy-specific, environment-specific

When environment changes, complier group changes
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IV beyond LATE: Limitation of LATE

In this lecture, we are going to do two things

First, we relax the assumption of binary treatment, single and binary IV

To generalize LATE interpretation in its original framework

Second, we introduce a more general framework with better external validity:
Marginal Treatment Effect (MTE)

We are going to see how choice model can be incorporated into IV
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IV beyond LATE: Choice Model and IV

Choice model is intrinsically nested in IV

When you consider always-taker, complier, never-taker

You are thinking about these people’s choices under different policy shocks

This choice structure is not fully utilized in pure design-based approach

It can definitely help you when data is not enough to identify the effect

The whole point of this lecture is to discuss how to use choice model and
economic theory to regularize IV

An interaction between design-based approach and structural approach
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IV beyond LATE: Choice Model and IV

You have already used it in LATE Theorem: Monotonicity

The idea of monotonicity comes from assuming treatment is a normal good

If the agent chooses something when the price is higher (D(z = 0) = 1)

Then he/she will definitely choose it when the price is lower (D(z = 1) = 1)
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Generalization of LATE: Multiple IV

In LATE theorem, we assume that both IV and treatment are single and binary
Then it gives you 2 × 2 = 4 types of people (A,C,N,D)
By assuming monotonicity, we eliminate D

We have four equations (final nodes)
LATE can be inverted from expectation functions from the four final nodes
It can be identified by the IV estimator
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Generalization of LATE: Multiple IV

What if IV and treatment are multiple or multivalued?

It will be a complicated weighted average of different TEs for different types
(groups)
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Generalization of LATE: Multiple IV

First, consider we have multiple binary IV and binary treatment

This is relatively simple

We run regressions taking z1, z2 as instruments (not z)

Assuming monotonicity for both z1 and z2

The corresponding IV estimator can be derived as:

ρ2SLS = ψLATE1 + (1 − ψ)LATE2

LATE1, LATE2 are LATEs for instrument z1 and z2
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Generalization of LATE: Multivalued Treatment

Now we consider multivalued treatment and binary IV: Average Causal Response
(ACR)

Assume that we have treatment s ∈ {0, 1, 2, ..., s̄}
For example, IV is the implementation of a compulsory education law

Treatment is the education level, which takes multiple values

We have the following three assumptions:

ACR1 Independence: {Y0i ,Y1i , ...,Ys̄ i ; s0i , s1i} ⊥ zi
ACR2 First stage existence: E[s1i − s0i] ≠ 0
ACR3 Monotonicity: s1i − s0i ≤ 0∀i or vice versa

ACR3 implicitly requires us to have an ”ordered” list of values for treatment
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Generalization of LATE: Multivalued Treatment

Under ACR1-3, IV identifies a weighted average of the unit causal response

Theorem 4.5.3 in MHE

When ACR1, ACR2, and ACR3 hold, we have:

E[Yi ∣zi = 1] − E[Yi ∣zi = 0]
E[si ∣zi = 1] − E[si ∣zi = 0] =

ŝ

∑
s=1

ωsE[Ysi − Ys−1,i ∣s1i ≥ s > s0i],

where ωs =
P[s1i ≥ s > s0i]

∑ŝ
j=1 P[s1i ≥ j > s0i]
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Generalization of LATE: Multivalued Treatment

Ysi − Ys−1,i is the unit response, or stepwise treatment effect

For each unit/step change, we average over all compliers that cover this unit/step

For instance, the unit change from s = 1 to s = 2 includes compliers

who choose s = 0 when z = 0, but choose s = 2, 3, ..., s̄ when z = 1
who choose s = 1 when z = 0, but choose s = 2, 3, ..., s̄ when z = 1

We then average over all units/steps with a weight ωs

ωs is the proportion of compliers involved in this unit change from s − 1 to s

It is a normalization, with ωs summing up to 1 over s
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Generalization of LATE: Multivalued IV

We can first decompose the multivalued IV to multiple dummies

Each dummy represents a specific value of IV

For example, if z = 0, 1, 2, we have dummies z1, z2 as indicators

z1 = 1 if z = 1; z1 = 0 if z = 0, 2

z2 = 1 if z = 2; z2 = 0 if z = 0, 1
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Generalization of LATE: Multivalued IV

Then we run the regression using the set of dummies z1, z2 as instruments

We can interpret the results as in multiple IV case

But is this correct?

An important assumption is monotonicity for each dummy IV

However, it is not true for z1

Because for the group of people with z1 = 1

They can be either z = 0 or z = 2

It is possible that Di(zi = 0) < Di(zi = 1) < Di(zi = 2)
Then, for z1 = 1, some people go to one direction (z = 2), some people go to the
other, violating the monotonicity assumption
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Generalization of LATE: Multivalued IV

Thus, monotonicity assumption is not as innocuous as in the 2 × 2 case

We need to go to deep choice structure of this assumption:
Axiom of Revealed Preference

In this case, you have to analyze one by one based on your specific context

WARP Definition 2.F.1 MWG

The Walrasian demand function x(p,w) satisfies the weak axiom of revealed
preference if the following holds for any two price wealth situations (p,w), (p′,w ′):

If p ⋅ x(p′,w ′) ≤ w , and x(p′,w ′) ≠ x(p,w), then p
′
⋅ x(p,w) > w

′

If some optimal bundle in situation B is also feasible but not chosen in situation
A, then the optimal bundle in situation A is not feasible in situation B (xA ≿R xB)

This is Weak Axiom of Revealed Preference
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Generalization of LATE: Multivalued IV

A stronger version of WARP is SARP

SARP Definition 3.J.1 MWG

The market demand function x(p,w) satisfies the strong axiom of revealed preference

if for any list of (p1,w1), ...(pN ,wN)

with x(pn+1,wn+1) ≠ x(pn,wn) for all n ≤ N − 1,

we have p
N
⋅ x(p1,w1) > w

N
, whenever p

n
⋅ x(pn+1,wn+1) ≤ w

n
for all n ≤ N − 1

SARP adds transitivity to WARP

If xN ≿R xN−1, xN−1 ≿R xN−2...x2 ≿R x1, we have xN ≿R x1

Let’s go to the example of MTO in Pinto (2015)
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Generalization of LATE: Multivalued IV

Moving to Opportunity (MTO) is a housing experiment to encourage low-income
families to move to neighborhood with low poverty rate

There are three policy groups (three values of IV)

Control group: No vouchers (z1)
Experimental group: Vouchers, available only for housing lease in low poverty
neighborhood (z2)
Section 8 group: Vouchers, available for any housing lease anywhere (z3)

There are three choices (three values of treatment)

Not relocating (t = 1)
Relocating to a low poverty neighborhood (t = 2)
Relocating to a high poverty neighborhood (t = 3)
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Generalization of LATE: Multivalued IV

Let uω(k , t) be the utility function of family ω (k consumption, t relocation
choice)

Let Wω(z , t) be the budget set of family ω under relocation decision t ∈ {1, 2, 3}
and MTO voucher z ∈ {z1, z2, z3}
Let Sω = [Cω(z1),Cω(z2),Cω(z3)] denote the type of family ω, defined by
relocation responses C(z) given different vouchers
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Generalization of LATE: Multivalued IV

Now we translate three subsidizing rules to budget set:

Control group (z1 = 1) subsidies nothing
Experimental group (z2 = 1) subsidies relocating to low poverty neighborhood
Section 8 group (z3 = 1) subsidies any relocation

Assumption A-1, A-2 Pinto (2015)

According to the features of MTO, we assume the budget sets satisfy:

Wω(z1, 2) ⊊Wω(z2, 2) = Wω(z3, 2) (1)

Wω(z1, 3) =Wω(z2, 3) ⊊ Wω(z3, 3) (2)

Wω(z1, 1) = Wω(z1, 2) =Wω(z1, 3) = Wω(z2, 1) = Wω(z2, 3) = Wω(z3, 1) (3)

What are the meanings of these three relations?
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Generalization of LATE: Multivalued IV

(1): If you choose to relocate to low poverty neighborhood (t = 2), your
consumption would be higher if you are in Experimental or Section 8 groups

(2): If you choose to relocate to high poverty neighborhood (t = 3), your
consumption would be higher if you are in Section 8 group

(3): If you choose not to relocate, or relocate to places that is not supported by
your MTO group, your budget will not change
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Generalization of LATE: Multivalued IV

Then we derive the following choice rule

Lemma L-1 Pinto (2015)

If preferences are rational, under Assumption A-1 and A-2:

1.Cω(z1) = 2 ⇒ Cω(z2) = 2,Cω(z3) ≠ 1

2.Cω(z1) = 3 ⇒ Cω(z2) ≠ 1,Cω(z3) ≠ 1

3.Cω(z2) = 1 ⇒ Cω(z1) = 1,Cω(z3) ≠ 2

4.Cω(z2) = 3 ⇒ Cω(z1) = 3,Cω(z3) = 3

5.Cω(z3) = 1 ⇒ Cω(z1) = 1,Cω(z2) = 1

6.Cω(z3) = 2 ⇒ Cω(z2) = 2

Test yourself, explain all these six inequalities
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Generalization of LATE: Multivalued IV

We further assume that neighborhood is a normal good

Assumption A-3 Pinto (2015)

For each family ω, and for z , z
′
∈ {z1, z2, z3}, if Cω(z) = t and Wω(z , t) is a proper

subset of Wω(z ′, t), then Cω(z ′) = t

To eliminate cases like Cω(z1) = 2,Cω(z2) = 2,Cω(z3) = 3

Using all above, we can eliminate the number of types from 27 to 7

Now you see the power of economic theory to guide your identification

When statistics tools are exhausted, remember you are an economist

Do not think first year Micro and Macro are useless!!!
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MTE: Choice Model

Now we go to the second part, how to improve the external validity

The reason why LATE is lack of external validity is because it is defined on a
policy-specific ex post group

Not some ex ante group, for example a group of high-skilled workers

Grouping by post-determined behavior, but not pre-determined characteristics

This ex post group will change when policy environment changes
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MTE: Choice Model

Now let’s explicitly construct a model for agents’ compliance behavior

In this model, we suppress subscript for individuals

Let j = 0, 1 be the treatment, Y1,Y0 be the potential outcomes

Y1 = µ1(X ,U1) (4)

Y0 = µ0(X ,U0) (5)

X is a set of control variables, U is unobserved factor on outcome
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MTE: Choice Model

Let D denote the choice of treatment, determined by a latent index model

D
∗
= µD(Z) − V , D = 1 if D

∗
≥ 0; D = 0 otherwise (6)

Z is an instrument that can change individual’s choices, V is an unobserved factor

For instance, Y is wage, D is college enrollment, Z is a policy to subsidize
students from poor regions

Agents observe everything. Econometricians observe (Z ,X ), but not (U0,U1,V )
(U0,U1,V ) can be correlated with each other
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MTE: Choice Model

We invoke five assumptions for this model

(A-1) (U0,U1,V ) are independent of Z conditional on X
Independence

(A-2) µD(Z) is nondegenerate conditional on X
Z contain at least one element not in X

(A-1) and (A-2) assure the existence of the instrument

(A-3) The distribution of V is continuous

(A-4) E(∣Y1∣),E(∣Y0∣) are finite

(A-5) 0 < Pr(D = 1∣X ) < 1
Possible to have D = 1 or D = 0 at any point of X
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MTE: Choice Model

An example of this model setting is the Roy Model (sorting model)

We have two sectors 0 and 1

Y is working payoff, there is relative working cost C = Z1 + VC in sector 1, Z1 is
observed and VC is unobserved

Agents choose a sector with higher payoff (abstract from cost)

The unobserved term in treatment function is positively correlated with
unobserved treatment return ⇒ Positive sorting

People with higher return sort into treatment
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MTE: Choice Model

Assume µ additively separable in U

Y1 = µ1(X ) + U1

Y0 = µ0(X ) + U0

D
∗
= µ1(X ) + U1 − [µ0(X ) + U0] − Z1 − VC , D = 1 if D

∗
≥ 0; D = 0 otherwise

In this case, we have V = −[U1 − U0 − VC ]
Positive sorting: Cov(U1 − U0,U1 − U0 − VC ) > 0

31 / 51



MTE: Choice Model

Assume µ additively separable in U

Y1 = µ1(X ) + U1

Y0 = µ0(X ) + U0

D
∗
= µ1(X ) + U1 − [µ0(X ) + U0] − Z1 − VC , D = 1 if D

∗
≥ 0; D = 0 otherwise

In this case, we have V = −[U1 − U0 − VC ]
Positive sorting: Cov(U1 − U0,U1 − U0 − VC ) > 0

31 / 51



MTE: Choice Model

Assume µ additively separable in U

Y1 = µ1(X ) + U1

Y0 = µ0(X ) + U0

D
∗
= µ1(X ) + U1 − [µ0(X ) + U0] − Z1 − VC , D = 1 if D

∗
≥ 0; D = 0 otherwise

In this case, we have V = −[U1 − U0 − VC ]
Positive sorting: Cov(U1 − U0,U1 − U0 − VC ) > 0

31 / 51



MTE: Choice Model

Assume µ additively separable in U

Y1 = µ1(X ) + U1

Y0 = µ0(X ) + U0

D
∗
= µ1(X ) + U1 − [µ0(X ) + U0] − Z1 − VC , D = 1 if D

∗
≥ 0; D = 0 otherwise

In this case, we have V = −[U1 − U0 − VC ]
Positive sorting: Cov(U1 − U0,U1 − U0 − VC ) > 0

31 / 51



MTE: Choice Model

Let P(Z ∣X ) ≡ Pr(D = 1∣Z ,X ) = FV ∣X (µD(Z))
FV ∣X (⋅) denotes the distribution of V conditional on X

This is the propensity score to get treated for agent with Z

Let UD = FV ∣X (V ), we have UD ∼ Unif [0, 1]
FV ∣X (V ) means the threshold propensity score the agent has to pass to get
treated when he/she draws V

Agent has to have an instrument Z which give him/her a propensity score
FV ∣X (µD(Z)) > FV ∣X (V ) = UD (larger than this threshold) to get treated

We have a clear one-to-one mapping between V and UD

Thus, for a choice function, an agent can be characterized by (X ,V ) or (X ,UD)
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MTE: Choice Model

Vytlacil (2002) proves that (A-1) to (A-5) in this additively separable selection
model is equivalent to the LATE model of Imbens and Angrist (1994)

The intuition is simple: V could not affect µD(Z)
D

∗
= µD(Z) − V ⇒ additively separable for Z and V

Thus, given z and z
′
, ∀V ⇒ D

∗(z) ≥ D
∗(z ′) or D

∗(z) ≤ D
∗(z ′)

This model explicitly describes the decision-making process in a structural way,
which allows us to investigate more causal questions
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MTE: Defining MTE

Now let’s define ATE and MTE in this model

Let ∆ = Y1 − Y0

ATE is defined as usual: ∆
ATE (x) ≡ E(∆∣X = x)

MTE is defined as the mean effect of treatment on those for whom X = x and
UD = uD(V = v)

Definition of the MTE

The Marginal Treatment Effect is defined as:

∆
MTE (x , uD) ≡ E(∆∣X = x ,UD = uD)
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MTE: Defining MTE

MTE is a mean treatment effect for a very specific group of people

People with observed characteristics X and unobserved taste on treatment V

People with observed characteristics X who would be indifferent between
treatment or not if they were randomly assigned a value of Z = z such that
Pz = uD

That is why it is called ”marginal”
Marginal people who have just the threshold of uD

Different from LATE, it is not defined by any instrument in an ex post way

This is a deep structural parameter that does not change when IV is changed

Thus, it is externally valid
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MTE: MTE as a Framework

We can prove that MTE is a general framework with various causal parameters as
its special cases

LATE can be written as a weighted average of MTE:

LATE = E(Y1 − Y0∣X = x ,D(z) = 1,D(z ′) = 0)
= E(Y1 − Y0∣X = x , u

′
D < UD ≤ uD)

= ∫
uD

u′D

∆
MTE (x , u)du

Here uD = Pr(D(z) = 1), u′D = Pr(D(z ′) = 1) are the threshold propensity scores
for instrument Z = z and Z = z

′

We can interpret LATE as the average TE for people whose threshold is below z
but above z

′
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MTE: MTE as a Framework

In general, we can express treatment parameter j by MTE as:

TE(j) = ∫
1

0
∆

MTE (x , uD)ωj(x , uD)duD

ωj is the weight for j
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MTE: Estimate MTE Using LIV

Now we have defined MTE and shown that it is a general framework

We suppress notation of conditional on x

How to identify it? Local instrumental variable (LIV)

LIV is the derivative of the conditional expection of Y w.r.t P(Z) = p:

∆
LIV (p) ≡ ∂E(Y ∣P(Z) = p)

∂p

LIV is the mean response to a policy change embodied in changes in P(Z)
A policy shock changes Z ⇒ changes propensity score P(Z) ⇒ changes
outcomeY
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MTE: Estimate MTE Using LIV

Under A1-A5, we can show that

∆
MTE (p) = ∆

LIV (p) = ∂E(Y ∣P(Z) = p)
∂p

For MTE at any propensity threshold p, we can use LIV at this point to identify it

What is the intuition?

MTE at a threshold means the causal effect on marginal people who would just
change their treatment at this point of P(z) = p

LIV is the changes of outcome at this marginal point P(Z) = p driven by an
exogenous variation on instrument Z
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MTE: Estimate MTE Using LIV

Then the question becomes how to estimate LIV?

First, assume a treatment choice function (Probit or logit), find propensity score
function p(z)
Second, estimate outcome Y given control X and propensity score function p(z)
Using non/semi-parametric methods such as local linear regression or partial linear
regression

Then estimate derivatives by small perturbation
Or it would be just the regression coefficient if you assume a linear model for Y

Or we can estimate the whole model in a fully parametric way (Kline and Walters,
2016)
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MTE: Estimate MTE Using LIV

Implementation: Stata package mtefe

This package can give you estimations of various causal parameters

And a full distribution of treatment effect

There is a slides of user guidance by Martin Andresen
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MTE: Conclusion

LATE is internally valid but not externally valid

We can combine choice model with IV to have a new framework: MTE

MTE measures the treatment effect for people with specific characteristics X and
some unobserved treatment taste V (or treatment threshold p)

It is externally valid and not IV-specific

Various causal parameters are special cases of weighted MTEs

We can estimate it using LIV with non/semi/parametric methods

It can be implemented using a Stata package
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Application: Kline and Walters (2016)

We illustrate the method we learn today by reading Kline and Walters (2016)

This paper is so interesting and insightful

Reading one paper like this carefully, is much better than reading 100 reg monkey
papers (for these, you can just read the abstracts)

It investigates the cost-benefit analysis for social programs when some close
substitutes exist

47 / 51



Application: Kline and Walters (2016)

We illustrate the method we learn today by reading Kline and Walters (2016)

This paper is so interesting and insightful

Reading one paper like this carefully, is much better than reading 100 reg monkey
papers (for these, you can just read the abstracts)

It investigates the cost-benefit analysis for social programs when some close
substitutes exist

47 / 51



Application: Kline and Walters (2016)

We illustrate the method we learn today by reading Kline and Walters (2016)

This paper is so interesting and insightful

Reading one paper like this carefully, is much better than reading 100 reg monkey
papers (for these, you can just read the abstracts)

It investigates the cost-benefit analysis for social programs when some close
substitutes exist

47 / 51



Application: Kline and Walters (2016)

We illustrate the method we learn today by reading Kline and Walters (2016)

This paper is so interesting and insightful

Reading one paper like this carefully, is much better than reading 100 reg monkey
papers (for these, you can just read the abstracts)

It investigates the cost-benefit analysis for social programs when some close
substitutes exist

47 / 51



Application: Kline and Walters (2016)

We illustrate the method we learn today by reading Kline and Walters (2016)

This paper is so interesting and insightful

Reading one paper like this carefully, is much better than reading 100 reg monkey
papers (for these, you can just read the abstracts)

It investigates the cost-benefit analysis for social programs when some close
substitutes exist

47 / 51



Application: Kline and Walters (2016)

Head Start (HS) is an early childhood education program provided for poor
families in the U.S.

People find large impact from observational studies, but small effect from RCT.
Does it mean that this HS is ineffective?

Kline and Walters (2016) claim that it is not because observational studies are not
well-designed

Rather, it is because observational studies compare people enroll in HS and people
do not enroll in any program

Meanwhile, RCTs compare people enroll in HS and people do not enroll in HS
But many other programs exist

People can actively sort into other programs
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Application: Kline and Walters (2016)

The treatment actually has three values: no program, other program, HS program

Kline and Walters (2016) first categorize people to all behavior types and use
ARP to eliminate some of them

Then they varify various causal parameters needed for different evaluation targets

ITT and LATE: not externally valid when the composition of compliers changes
MTE: externally valid when the composition of compliers changes

Using these causal estimates, they implement new cost-benefit analysis

Taking into consideration the gov’s monetary savings when people transfer from
other programs to HS

49 / 51



Application: Kline and Walters (2016)

The treatment actually has three values: no program, other program, HS program

Kline and Walters (2016) first categorize people to all behavior types and use
ARP to eliminate some of them

Then they varify various causal parameters needed for different evaluation targets

ITT and LATE: not externally valid when the composition of compliers changes
MTE: externally valid when the composition of compliers changes

Using these causal estimates, they implement new cost-benefit analysis

Taking into consideration the gov’s monetary savings when people transfer from
other programs to HS

49 / 51



Application: Kline and Walters (2016)

The treatment actually has three values: no program, other program, HS program

Kline and Walters (2016) first categorize people to all behavior types and use
ARP to eliminate some of them

Then they varify various causal parameters needed for different evaluation targets

ITT and LATE: not externally valid when the composition of compliers changes
MTE: externally valid when the composition of compliers changes

Using these causal estimates, they implement new cost-benefit analysis

Taking into consideration the gov’s monetary savings when people transfer from
other programs to HS

49 / 51



Application: Kline and Walters (2016)

The treatment actually has three values: no program, other program, HS program

Kline and Walters (2016) first categorize people to all behavior types and use
ARP to eliminate some of them

Then they varify various causal parameters needed for different evaluation targets

ITT and LATE: not externally valid when the composition of compliers changes
MTE: externally valid when the composition of compliers changes

Using these causal estimates, they implement new cost-benefit analysis

Taking into consideration the gov’s monetary savings when people transfer from
other programs to HS

49 / 51



Application: Kline and Walters (2016)

The treatment actually has three values: no program, other program, HS program

Kline and Walters (2016) first categorize people to all behavior types and use
ARP to eliminate some of them

Then they varify various causal parameters needed for different evaluation targets

ITT and LATE: not externally valid when the composition of compliers changes
MTE: externally valid when the composition of compliers changes

Using these causal estimates, they implement new cost-benefit analysis

Taking into consideration the gov’s monetary savings when people transfer from
other programs to HS
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Conclusion

LATE is the most popular way to interpret IV estimate

However, it has two important limitations

Usually not feasible when you have multivalued IV ⇒ too many types
Not externally valid when complier group changes

To fix these two issues, we need to go deep into the compliance (treatment
selection) problem

Treatment selection is intrinsically a part of IV, but not fully explored by pure
design-based approach
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Conclusion

First, we use ARP and other reasonable economic assumptions to simplify the
identification in complicated multivalued IV cases

Second, we introduce MTE framework to deal with external validity issues

MTE is the treatment effect of a small group of people with specific value of
characteristics X and treatment taste V (or treatment threshold UD)

It can be identified and estimated using LIV
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