Quantitative Spatial Economics III: Diamond Style Model in Urban Economics

Zibin Huang ¹

¹College of Business, Shanghai University of Finance and Economics

April 26, 2025

Overview

1 Introduction

- 2 Data and Descriptive Stats
- 3 Model Setting
- 4 Estimation
- 5 Solving the Equilibrium
- 6 Counterfactual

Introduction

- In the next two weeks, we are going to introduce Diamond style model
- The basic idea is to transform a non-linear model to a linear one
- Then we can simply use reduced-form approach to estimate parameters one by one
- It is a good starting example for beginners to learn structural model

- The original model comes from Diamond (2016), who investigates how spatial sorting exacerbated inequality in the U.S.
- She finds that during the last few decades, high-skilled and low-skilled workers sorted into different locations in America

Introduction

- High-skilled workers concentrated more and more in developed cities, increasing amenities and living costs
- Low-skilled workers were kicked out and had to live in cities with low amenities and living costs
- She shows that the overall inequality change is much larger than purely education wage gaps
- The increased inequality in amenity amplified the overall inequality

- China experienced high economic growth during the last forty years
- TFP and technology developed rapidly
- Did this growth lead to similar spatial sorting and gentrification?
- Now we will introduce an application of Diamond model in China's context

We have the following main research question:

What is the impact of the technology shocks on migration for different skilled groups in China

We answer this question by constructing a spatial GE model with:

- Endogenous labor market
- Endogenous housing market
- Endogenous amenity supply

Preview of Findings

Descriptive evidence

- Cities with stronger patent growth experienced faster wage growth for both low- and high-skilled workers
- However, these cities attract much more low-skilled migrants than high-skilled migrants.
- Structural estimation results
 - Low-skilled workers care more about wages and housing prices, while high-skilled workers care more about amenities.
 - A positive shock in patents attracts more low-skilled workers than high-skilled workers, reduces the skill ratio and amenities, and discourages high-skilled migrants.

- Counterfactual of reducing patent from 2015 level to 2005 level:
 - Large reduction in low-skilled migration but not high-skilled migration
 - Welfare loss for both skills, especially low-skilled people with non-ag hukou
- Generally, growth in China during 2005 to 2015 is inclusive without diversification

Data

Data Source:

- Migration: micro-level Census 2005, 2010, 2015
- Wages, housing prices, and amenities: statistical yearbooks
- Patent citation data: China National Intellectual Property Administration and Google Patent
- Migrants: those who left hukou city for at least 6 months.
- Laborforce: age 25 50, currently working
- Non-Agriculture sector: working in urban regions and non-agriculture industries
- Agriculture sector: working in rural regions

PCA Results of the Amenity Index

	Loading	Unexplained variance
Panel A: Healthcare Index		
Hospital per 10,000 residents	0.7071	0.4351
Doctors per 10,000 residents	0.7071	0.4351
Panel B: Infrastructure Index		
Kilometers of road per 10,000 residents	0.4178	0.8078
Highway passengers per 10,000 residents	0.5987	0.6053
High-speed railway	0.6834	0.4856
Panel C: Environment Index		
PM 2.5	0.5315	0.339
Heavily polluted days	0.5712	0.2365
Polluted days	0.6255	0.08434
Panel D: Education Index		
Teacher-student ratio in primary schools	0.0818	0.9824
Teacher-student ratio in middle schools	0.1136	0.966
Number of colleges	0.5395	0.2333
Number of Project 985 universities	0.5886	0.08752
Number of Project 211 universities	0.5855	0.09703
Panel E: Amenity Index		
Healthcare Index	0.6434	0.4391
Infrastructure Index	0.5535	0.5848
Environment Index	-0.2340	0.9258
Education Index	0.4742	0.6952

Descriptive Analysis: Spatial Distribution of Patent Shock

Figure 1: Spatial Distribution of Δ Log(Citation) (2005 - 2015)

Figure 2: Effect of Citation Shock on Wages for High- and Low-skilled Workers

Figure 3: Effect of Citation Shock on Number of High- and Low-skilled Migrants

Figure 4: Effect of Citation Shock on Number of High- and Low-skilled Employment

Figure 5: Citation Shock and Change in Skilled Ratio

Figure 6: Effect of Citation Shock on Housing Price and Amenity

Patents

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	∆ Log Em- ployment	∆ Log High-Skilled Employ- ment	∆ Log Low-Skilled Employ- ment	∆ Log High-skilled Migrants	∆ Log Low-skilled Migrants	∆ Employ- ment Skilled Ratio
Panel A: OLS						
Δ Log(Citation)	0.0477	-0.00261	0.0644	0.0545	0.0921	-0.0134*
	(0.0325)	(0.0313)	(0.0394)	(0.0757)	(0.0570)	(0.00785)
Panel B: Reduced Form						
Citation shock	1.837***	-0.304	2.898***	1.607***	3.051***	-0.620***
	(0.312)	(0.291)	(0.346)	(0.605)	(0.472)	(0.0654)
Panel C: IV						
Δ Log(Citation)	1.739**	-0.369	2.836**	1.056*	3.044**	-0.626**
	(0.772)	(0.357)	(1.240)	(0.565)	(1.441)	(0.276)
Year FE	Х	Х	Х	Х	Х	Х
City FE	Х	Х	Х	Х	Х	Х

▶ Patents ▶ Validity of Bartik

	(1)	(2)	(3)	(4)
VARIABLES	∆ Log High-skilled Wage	∆ Log Low-skilled Wage	∆ Log(Housing Price)	Δ Amenity Index
Panel A: OLS				
Δ Log(Citation)	-0.00957	-0.0140	-0.0239	0.0889
	(0.0158)	(0.0167)	(0.0160)	(0.0630)
Panel B: Reduced Form				
Citation shock	0.727***	0.549***	0.938***	0.709
	(0.121)	(0.105)	(0.194)	(0.462)
Panel C: IV				
Δ Log(Citation)	0.727**	0.560*	1.017	0.955
	(0.352)	(0.292)	(0.623)	(0.688)
Year FE	Х	Х	Х	Х
City FE	Х	Х	Х	Х

Patents

Descriptive Statistics

- We have the following findings in our data
- As technology grew in China during the last decade:
 - Wages for both skills increased, low-skilled workers migrated more
 - Housing price increased
 - Amenity increased, but not in a very significant magnitude
- In general, we do not find positive sorting of migration resulting from the technology growth in China during 2005-2015
- This is totally different from previous findings in developed countries
- Why is this the case?
- Let's go to a structural model to explain these findings

Model Setup

- K cities in China, indexed by $k \in \{1, ..., K\}$
- Two sectors, $j \in \{a, na\}$
- Workers differ in home location k_0 , hukou type j_0 , and skill $e \in \{L, H\}$.
- Each worker i first chooses the sector j, then chooses which city k to live
- Non-ag hukou workers can only choose the non-ag sector
- Three markets: labor market, housing market, and amenity market
- Labor supply, housing supply, and amenity supply are endogenous in the model

Labor Demand — Non-agricultural Sector

- Firms in the non-agricultural sector produce a homogeneous tradable good
- Using technology A_{kt} , high-skilled labor $H_{na,kt}$, low-skilled labor $L_{na,kt}$, capital $K_{na,kt}$, and machine $C_{na,kt}$

$$Y_{na,kt} = z_{na,kt} N_{na,kt}^{\alpha} (\theta_{kt}^{\kappa} \kappa_{kt})^{1-\alpha}$$

$$N_{na,kt} = (\theta_{kt}^{L} (L_{na,kt} + \omega C_{kt})^{\rho} + \theta_{kt}^{H} H_{na,kt}^{\rho})^{\frac{1}{\rho}}$$

$$C_{kt} = f_{C}(A_{kt})$$

$$\theta_{kt}^{\kappa} = f_{\kappa}(A_{kt})$$

$$\theta_{kt}^{L} = f_{L}(A_{kt}, H_{na,kt}, L_{na,kt})$$

$$\theta_{kt}^{H} = f_{L}(A_{kt}, H_{na,kt}, L_{na,kt})$$

- $N_{na,kt}^{\alpha_{na}}$ is a CES aggregator of labor
- *L* and *C* are substitutes
- θ is factor-augmenting productivity

Labor Demand — Non-agricultural Sector

- This is a non-linear C-D style production function with many premitive parameters
- We can transform this to be a linear labor demand equation
- Using first order conditions and log linearization

By F.O.C. we have:

$$W_{na,kt}^{H} = z_{na,kt} \alpha N_{na,kt}^{\alpha-\rho} (\theta_{kt}^{K} K_{kt})^{1-\alpha} H_{na,kt}^{\rho-1} \theta_{kt}^{H}$$
$$W_{na,kt}^{L} = z_{na,kt} \alpha N_{na,kt}^{\alpha-\rho} (\theta_{kt}^{K} K_{kt})^{1-\alpha} (L_{na,kt} + \omega C_{kt})^{\rho-1} \theta_{kt}^{L}$$
$$\kappa_{t} = z_{kt} N_{na,kt}^{\alpha} (\theta_{kt}^{K} K_{kt})^{-\alpha} (1-\alpha) \theta_{kt}^{K}$$

Labor Demand — Non-agricultural Sector

• We then log linearize this system and have labor demand functions as:

$$\begin{split} w_{na,kt}^{H} &= \ln W_{na,kt}^{H} = d_{na,kt} + (1-\rho) \ln N_{na,kt} + (\rho-1) \ln H_{na,kt} + \ln \theta_{kt}^{H} \\ w_{na,kt}^{L} &= \ln W_{na,kt}^{L} = d_{na,kt} + (1-\rho) \ln N_{na,kt} + (\rho-1) \ln (L_{na,kt} + \omega C_{kt}) + \ln \theta_{kt}^{L} \\ N_{na,kt} &= (\theta_{kt}^{L} (L_{na,kt} + \omega C_{kt})^{\rho} + \theta_{kt}^{H} H_{na,kt}^{\rho})^{\frac{1}{\rho}} \\ d_{na,kt} &= \ln \left(z_{na,kt}^{1/\alpha} \alpha \left(\frac{(1-\alpha) \theta_{kt}^{K}}{\kappa_{t}} \right)^{\frac{1-\alpha}{\alpha}} \right) \end{split}$$

Does this system look familiar?

We can write the wage as a additive separable function of workforces H, L and technology A:

$$w_{na,kt}^{H} = g_{na,H}(A_{kt}, H_{na,kt}, L_{na,kt}) + d_{na,kt}^{H}$$
$$w_{na,kt}^{L} = g_{na,L}(A_{kt}, H_{na,kt}, L_{na,kt}) + d_{na,kt}^{L}$$

- d is the structural residual, determined by various of deep parameters in the production function
- Then we can use a simple log linear function to approximate them

• We further rewrite it a little bit:

$$w_{na,kt}^{H} = \gamma_{HA}A_{kt} + \gamma_{na,HH}\ln(H_{na,kt}) + \gamma_{na,HL}\ln(L_{na,kt}) + d_{na,kt}^{H}$$
$$w_{na,kt}^{L} = \gamma_{LA}A_{kt} + \gamma_{na,LH}\ln(H_{na,kt}) + \gamma_{na,LL}\ln(L_{na,kt}) + d_{na,kt}^{L}$$

- These are just two linear regressions!
- Log wage is y, log workforce numbers are x, error term d
- A_{kt} is proxied by the patent shock

Labor Demand — Non-agricultural Sector

- If we do not care so much about the details of the production function
- If you just want to model the wage/labor demand at equilibrium
- \blacksquare We can just estimate regression coefficents γ using IV
- Instead of estimating the primitive parameters in the production function θ, z, ω
- This makes your life much much much easier
- But this is not feasible when you want to look deep into the production process
- Or if you want to run some counterfactuals by changing z or other deep parameters

- The production in the agricultural sector only involves high-skilled labor H_{a,kt} and low-skilled labor L_{a,kt}
- H and L are perfect substitutes

$$Y_{a,kt} = z_{ag,kt} (N_{a,kt}^{\alpha_a})^{\eta}$$

 $N_{a,kt} = L_{a,kt} + H_{a,kt}$

 Similarly, we can transform labor demand function in agricultural sector as:

$$w_{ag,kt}^{H} = w_{ag,kt}^{L} = \gamma_{ag} \ln(H_{ag,kt} + L_{ag,kt}) + d_{ag,kt}$$

Labor Supply

- Four types of workers: ag local, ag migrant, na local, na migrant
- Two restrictions in location choice set
 - Workers with non-ag hukou do not choose ag sector
 - Workers with ag hukou do not choose ag sector in other locations
- Thus, workers with non-ag hukou choose among non-ag sectors in all locations in one step
- Workers with ag hukou make sequential decisions
 - Step 1: Choose between hometown ag sector and non-ag sector
 - Step 2: If choosing non-ag sector, which location to go

The utility of working in the non-agricultural sector in city k and year t is

$$V_{ikt} = \beta_e^w (w_{na,kt}^e - \zeta r_{kt}) + \beta_e^h WithinHometown_{ikt} + \beta_e^p WithinProvince_{ikt} + \beta^h hukou_{kt} + \beta_e^a a_{kt} + \nu_{kt}^e + \epsilon_{ikt}$$

- *w*^e_{kt} is wage, *r*_{kt} is housing price; ζ is expenditure share on housing
- *a_{kt}* and *v_{kt}* are the observed endogenous/unobserved exogenous amenity
- hukoukt is the hukou policy
- WithinHometown_{ikt} and WithinProvince_{ikt} capture migration cost/home bias
- ϵ_{ikt} is an i.i.d. shock with T1EV distribution
- Heterogeneous preference varies by worker's skill e

The value of working in the non-agricultural sector for individual *i* in year *t* with hometown k₀ is

$$W_{ik_0t}^{na} = \max\{V_{i1t}^{k_0}, V_{i2t}^{k_0}, ... V_{iKt}^{k_0}\}$$

which is the maximum value of working in the non-agricultural over all possible cities.

Based on the property of T1EV distribution, we have:

$$E[W_{ik_0t}^{na}] = \max\{V_{i1t}^{k_0}, V_{i2t}^{k_0}, \dots V_{iKt}^{k_0}\} = \ln[\sum_{k \in K} \exp(V_{ikt}^{k_0})]$$

Labor Supply: Sector Choices

- For ag hukou workers, they have an additional first step sector choice
- The value of working in the agricultural sector in prefecture k is

$$W_{it}^{a} = \alpha_{0k_0} + \alpha_1 w_{a,k_0t}^{e} + \xi_{it}^{a}$$
$$W_{it}^{na} = E[W_{ik_0t}^{na}] + \xi_{it}^{na}$$

- α_{0k} is a city-specific constant term
- *w_{a,kt}* is the agricultural earnings
- ξ_{it} is an i.i.d. shock with T1EV distribution
- The sector choice decision is

 $\max\{W^{na}_{it},W^{a}_{it}\}$

- This is a very typical discrete choice model
- It is non-linear, but still we have many off-the-shelf tools to estimate it
- We will show later how to estimate this non-linear system using IV: BLP method

Housing Supply

 Developers are price-takers and sell homogeneous houses at the marginal cost of production

$$R_{kt} = \iota_t \times MC(CC_{kt}, LC_{kt})$$

where ι_t is interest rate, CC_{kt} is construction costs, and LC_{kt} is land costs.

The cost of land LC_{kt} is a function of the aggregate demand for local goods

$$HD_{kt} = L_{na,kt}W_{na,kt}^{L} + H_{na,kt}W_{na,kt}^{H}$$

The housing supply equation is

$$r_{kt} = \ln(R_{kt}) = \ln(\iota_t) + \ln(CC_{kt}) + \gamma_k \ln(HD_{kt})$$

$$\gamma_k = \gamma_1^{hd} + \gamma_2^{hd} geo_k$$

where x_k^{geo} is the altitude that affects the elasticity of housing price with respect to local good demand.

Endogenous amenity depends on technology and skill ratio:

$$a_{kt} = \gamma_1^a A_{kt} + \gamma_2^a \ln\left(\frac{H_{na,kt}}{L_{na,kt}}\right) + \epsilon_{kt}^a$$

- Local amenities respond to the education of neighboring households (Bayer, Ferreira, and McMillan, 2007) and college employment ratios (Diamond, 2016).
- Patents/tech growth have a direct impact on amenities.
Equilibrium in this model is defined by a set of working populations, wages, housing prices, and amenities such that

- The high-skill labor demand equals high-skill labor supply for both sectors and all cities.
- The low-skill labor demand equals low-skill labor supply for both sectors and all cities.
- Housing demand equals housing supply in the non-agricultural sector for all cities.
- Endogenous amenities demand equals endogenous amenity supply for both sectors and all cities.

- We log linearize and take the first difference of these equations
- Then use different Bartik IVs to estimate the parameters of the model
- In estimation, we find that:
 - Patent growth increases wages Stimation of Labor Demand
 - Patent growth increases housing prices Estimation of Housing Supply
 - Patent growth increases amenity Estimation of Amenity Supply
 - Low-skilled care more about wage; High-skilled care more about amenity

 Estimation of Labor Supply

The model fit is good Model Fit

Estimation of Labor Demand in the Non-agricultural Sector

We use first difference regression to estimate labor demand equations

$$\Delta w_{na,kt}^{H} = \gamma_{HA} \Delta A_{kt} + \gamma_{na,HH} \Delta \ln H_{na,kt} + \gamma_{na,HL} \Delta \ln L_{na,kt} + \Delta \epsilon_{na,kt}^{H}$$

$$\Delta w_{na,kt}^{L} = \gamma_{LA} \Delta A_{kt} + \gamma_{na,LH} \Delta \ln H_{na,kt} + \gamma_{na,LL} \Delta \ln L_{na,kt} + \Delta \epsilon_{na,kt}^{L}$$

- Need variation in labor supply uncorrelated with unobserved changes in local productivity
- Instrument for low- and high-skilled workforce: migrant Bartik
- Instrument for local patent shock: patent Bartik

Back

Migrant Bartik

National changes in the number of migrants at industry level × share of migrants in each industry in a location (Card, 2009):

$$\Delta B_{kt}^{e} = \sum_{\text{ind}} \left(\text{Mig}_{\text{ind},na,-k,t}^{e} - \text{Mig}_{\text{ind},na,-k,2005}^{e} \right) \frac{\text{Mig}_{\text{ind},na,k,2005}^{e}}{\text{Mig}_{na,k,2005}^{e}}$$

- Mig^e_{ind,na,-k,t}: total number of skill e migrants in industry ind in year t, excluding migrants in city k
- Mig^e_{ind,na,k,2005}: number of skill e migrants in industry ind in city k in year 2005.

▶ Back

$$\Delta P_{kt} = \sum_{\textit{ind}} (\textit{Patent}_{\textit{ind},-k,t} - \textit{Patent}_{\textit{ind},-k,2005}) \frac{E_{\textit{ind},k,2005}}{E_{k,2005}}$$

- Patent_{ind,-k,t} represents the log number of patent in industry ind in year t in the country, excluding city k.
- E_{ind,k,2005} and E_{k,2005} measure the number of workers in industry *ind* in city k in year 2005.
- Measure exogenous technology shocks
- Industry: two-digit, total 95 industries (54 with patent)

Table 1: Estimation of the Labor Demand in the Non-agricultural Sector

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
VARIABLES	∆ Log High-skilled Wage	∆ Log Low-skilled Wage	∆ Log High-skilled City Population	∆ Log Low-skilled City Population	∆ Log Citation	∆ Log High-skilled Wage	∆ Log Low-skilled Wage
Δ Log Citation	0.0330*** (0.0118)	0.0330** (0.0131)				1.128*** (0.330)	1.055*** (0.313)
Δ Log High-skilled City Population	0.0390 (0.0241)	0.0408 (0.0268)				-0.176 (0.520)	0.00360 (0.494)
Δ Log Low-skilled City Population	-0.0601* (0.0310)	-0.0639* (0.0344)				-0.691 (0.782)	-0.838 (0.743)
Citation shock	((, ,	-0.208 (0.134)	0.0923 (0.106)	0.514** (0.236)		()
Migrant bartik for high-skill workers			0.607***	0.387***	0.367		
Migrant bartik for low-skill workers			-0.288 (0.249)	0.548*** (0.197)	-0.259 (0.438)		
Observations	481	481	481	481	481	481	481
R-squared	0.025	0.021					
Model	OLS	OLS	First stage	First stage	First stage	IV GMM	IV GMM
Cragg-Donald Wald F						3.355	3.355
Sanderson-Windmeijer F			14.51	14.42	10.73		
Standard errors in parentherer							

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

$$\Delta w_{a,kt} = \gamma_a \Delta \ln(H_{a,kt} + L_{a,kt}) + \Delta \epsilon_{a,kt}$$

- Count all workers in the rural area as agricultural workers.
- Instrument for agricultural employment: population with agricultural hukou

Back

Table 2: Estimation of the Labor Demand in the Agricultural Sector

	(1)	(2)	(3)
VARIABLES	∆ Log Agr Income	∆ Log Agr Employ- ment	Δ Log Ag Income
Δ log agricultural employment	-0.0423*		-0.166***
	(0.0238)		(0.0341)
Δ log agricultural population	. ,	1.166***	· · · ·
		(0.0518)	
Observations	481	481	481
R-squared	0.007		
Model	OLS	First stage	IV GMM
Cragg-Donald Wald F		_	506.4
Sanderson-Windmeijer F		506.4	

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

$$\Delta r_{kt} = \left[\gamma_1^{hd} + \gamma_2^{hd} \times \ln(Slope_k)\right] \Delta \ln(HD_{kt}) + \Delta \epsilon_{kt}^r$$

- Need variation in housing demand unrelated to changes in unobserved factors driving housing prices Δ ln(CC_{kt})
- Instrument for housing demand: wage Bartik
- Back

Wage Bartik

 We interact cross-sectional differences in industrial employment composition with national changes in industry wage levels to construct the wage Bartik following (Diamond, 2016):

$$\Delta W_{kt}^{H} = \sum_{ind} (w_{ind,na,-k,t}^{H} - w_{ind,na,-k,2005}^{H}) \frac{H_{ind,na,k,2005}}{H_{na,k,2005}}$$
$$\Delta W_{kt}^{L} = \sum_{ind} (w_{ind,na,-k,t}^{L} - w_{ind,na,-k,2005}^{L}) \frac{L_{ind,na,k,2005}}{L_{na,k,2005}}$$

- w^e_{ind,na,-k,t}: log wage of high/low skill workers in industry *ind* in year *t*, excluding city *k*
- H_{ind,na,k,2005} and L_{ind,na,k,2005}: high/low skill workers in industry ind in city k in the urban area in 2005

Estimation of the Housing Market

Table 3: Estimation of the Housing Market

VARIABI ES	(1) ∆ Log(Housing	(2) ∆ Log Housing	(3) ∆ Log Housing	(4) ∆ Log(Housing
	Price)	Demand	Demand * Geo	Price)
Δ Log housing demand	0.147***			0.376***
	(0.0201)			(0.0443)
Δ Log housing demand * Log slope	0.0268***			0.0206**
	(0.00798)			(0.0100)
Wage Bartik IV for High-skilled Workers		2.131***	-1.963***	
		(0.381)	(0.516)	
Wage Bartik IV for Low-skilled Workers		-1.169***	1.612***	
		(0.387)	(0.525)	
Wage Bartik IV for High-skilled Workers * Log slope		-0.917***	1.720***	
		(0.237)	(0.321)	
Wage Bartik IV for Low-skilled Workers * Log slope		0.954***	-0.489	
		(0.237)	(0.322)	
Observations	481	481	481	481
R-squared	0.147			
Model	OLS	First stage	First stage	IV GMM
Cragg-Donald Wald F				40.65
Sanderson-Windmeijer F		622.1	54.93	
· · · · · ·				

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

$$\Delta a_{kt} = \gamma_1^a \Delta A_{kt} + \gamma_2^a \Delta \ln \left(\frac{H_{na,kt}}{L_{na,kt}}\right) + \Delta \epsilon_{kt}^a$$

- Instrument for changes in the skilled ratio: employment Bartik for low- and high-skilled workers
- Instrument for patent shocks: patent Bartik

Back

Employment Bartik

$$\Delta E_{kt}^{H} = \sum_{ind} (H_{ind,na,-k,t} - H_{ind,na,-k,2005}) \frac{H_{ind,na,k,2005}}{H_{na,k,2005}}$$
$$\Delta E_{kt}^{L} = \sum_{ind} (L_{ind,na,-k,t} - L_{ind,na,-k,2005}) \frac{L_{ind,na,k,2005}}{L_{na,k,2005}}$$

- *H_{ind,na,-k,t}* represents the log number of high-skilled worker in industry *ind* in year *t* in the country, excluding city *k*.
- L_{ind,na,-k,t} represents the log number of low-skilled worker in industry *ind* in year t in the country, excluding city k.
- *H_{na,-k,t}*, *L_{na,-k,t}* follow the same definitions as in the construction of wage bartik.

Table 4: Estimation of the Amenity Market

	(1)	(2)	(3)	(4)
VARIABLES	Δ Amenity Index	∆ Log High-skilled City Population Ratio	Δ Log Citation	Δ Amenity Index
Δ Log Citation (Flow, IPA)	0.152***			1.109*** (0.315)
Δ High-skilled City Population Ratio	0.397 (0.396)			4.714** (2.397)
Citation shock	()	-0.0807*** (0.0211)	0.374 (0.246)	
Wage Bartik IV for high-skilled workers		0.0757	-1.055	
Wage Bartik IV for low-skilled workers		0.0792 (0.0611)	1.579** (0.713)	
Observations	481	481	481	481
R-squared	0.040			
Model	OLS	First stage	First stage	IV GMM
Cragg-Donald Wald F				5.038
Sanderson-Windmeijer F		13.15	7.846	

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Estimation of Amenity Market (Sub-indices)

	(1)	(2)	(3)	(4)
VARIABLES	∆ Infrastructure Index	Δ Environment Index	Δ Health Index	Δ Education Index
∆ Log(Citation)	0.968***	-0.782***	0.797**	-0.0619
	(0.289)	(0.235)	(0.317)	(0.0908)
∆ High-skilled Ratio	4.777**	-4.425**	1.292	2.696***
	(2.207)	(1.797)	(2.418)	(0.693)
Constant	-0.903**	1.420***	-0.879 [*]	0.153
	(0.418)	(0.340)	(0.458)	(0.131)
Observations	481	481	481	481
Model	IV GMM	IV GMM	IV GMM	IV GMM
Kleibergen-Paap rk LM	14.6	14.6	14.6	14.6
Cragg-Donald Wald F	4.978	4.978	4.978	4.978

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Estimation of the Amenity Market

	(1)	(2)	(3)	(4)
VARIABLES	∆ Amenity Index	∆ Log High-skilled Ratio	Δ Log Citation	∆ Amenity Index
	0 107***			1 000***
Δ Log Citation	(0.0240)			1.036***
A Llink skilled Englander Detie	(0.0349)			(0.306)
△ High-skilled Employment Ratio	0.502			4.950
A Log number of college students	0.394)	0 0000**	0.169	(2.400)
Z Log number of conege students	(0.0700)	-0.0232	(0.106)	(0.182)
Citation Shock	(0.0799)	0.0720***	0.306	(0.102)
Citation Shock		(0.0214)	(0.251)	
Wage Bartik IV for High-skilled Workers		0.0686	-1 012	
Huge burth in high skilled Horners		(0.0574)	(0.672)	
Wage Bartik IV for Low-skilled Workers		0.0894	1 511**	
The participation for some shared fromers		(0.0611)	(0.715)	
Constant	0.406***	0.0288	0.696***	-1.147**
	(0.0781)	(0.0207)	(0.243)	(0.467)
Observations	479	479	479	479
R-squared	0.062			
Model	OLS	First stage	First stage	IV GMM
Sanderson-Windmeijer F		9.432	5.386	

Table 6: Estimation of Amenity Market (Robustness)

Labor Supply: Location Choices

We have the following utility function to estimate:

$$V_{ikt} = \beta_e^w (w_{na,kt}^e - \zeta r_{kt}) + \beta_e^h WithinHometow_{nikt} + \beta_e^p WithinProvince_{ikt} + \beta_e^h hukou_{kt} + \beta_e^a a_{kt} + \nu_{kt}^e + \epsilon_{ikt}$$
(1)

- With T1EV distribution, it is a typical Logit model
- We can always use MLE to estimate it
- However, we all know that wage, rent, amenity are all endogenous in the model
- Migration choices of people will affect them

- We must find a way to solve this endogeneity issue
- In linear regression, we usually use IV
- Therefore, we have to find a way to apply IV in discrete choice model
- Traditional linear IV method did not work in this case
- We introduce two methods today: BLP and Control Function

▶ Back

- The first method is called BLP, introduced in Berry, Levinsohn, and Pakes (1995)
- It first transform the endogeneity issue in a nonlinear model to a linear one
- Then we can use well-developed linear IV method to solve it

- Assume we have the car buying problem
- There are M markets with J_m options (brands) in each market
- Utility for consumer *n* in market *j* to choose brand *m* is:

$$U_{njm} = V(p_{jm}, x_{jm}, s_n, \beta_n) + \xi_{jm} + \epsilon_{njm}$$

- *p_{jm}* price; *s_n* personal attributes; *x_{jm}* product attributes; *ξ_{jm}* unobserved product attributes; *ϵ_{njm}* i.i.d. T1EV shock
- Price is correlated with unobserved brand attributes $\xi_{jm} \not\perp p_{mj}$

Endogeneity in DCM: 1. BLP

- Important feature of BLP: endogeneity comes from market-product level ξ_{jm}
- That is why we can use it in Diamond model
- Migration choice is individual level
- But endogeneity comes from destination location level

Endogeneity in DCM: 1. BLP

- The idea of BLP employs a two-step approach
- First, add in a product-market level FE, absorb ξ_{jm}
- Estimate the equation with fixed effect
- Second, open the box of product-market level FE, estimate the remaining parameters

We can decompose the observed utility value into

$$V_{njm} = \underbrace{\overline{V}(p_{jm}, x_{jm}, \overline{\beta})}_{I} + \underbrace{\widetilde{V}(p_{jm}, x_{jm}, s_n, \overline{\beta}_n)}_{I}$$

varies only over product-market

varies also over consumer

Then we have the utility to be

$$U_{njm} = \underbrace{[\bar{V}(p_{jm}, x_{jm}, \bar{\beta}) + \xi_{jm}]}_{\text{a product-market level fixed effect}} + \tilde{V}(p_{jm}, x_{jm}, s_n, \tilde{\beta}_n) + \epsilon_{njm}$$

 We just combine all terms varying only at product-market level together • We define product-market level FE as:

$$\delta_{jm} = \bar{V}(p_{jm}, x_{jm}, \bar{\beta}) + \xi_{jm}$$
⁽²⁾

$$U_{njm} = \delta_{jm} + \tilde{V}(p_{jm}, x_{jm}, s_n, \tilde{\beta}_n) + \epsilon_{njm}$$
(3)

- Equation (3) does not entail any endogeneity
- Step 1: We run a Logit model with jm level FE to estimate parameters $\tilde{\beta}$
- Step 2: We get estimates of δ_{jm} in step 1, and run IV regression for equation and get β
 (2)

The essence of BLP

- We cannot run IV regression directly in DCM
- We first pack all terms at the level where endogeneity happens into FE
- Then we estimate a DCM with these FEs
- We have estimated FEs, then unpack it and run linear IV regression
- Transform non-linear IV to be linear IV
- BLP tells you how to use an IV in a DCM, but only in a specific model structure with nested endogeneous variables.

- BLP is not always feasible (error structure...)
- The algorithm of estimating BLP is sometimes complicated
- If the dimension of the fixed effect is too high, you have to use some contraction method
- Highly recommend you to read BLP part in Train's book (or better, BLP 1993)
- The second important non-linear IV approach is Control Function (CF)

• The utility of consumer *n* buying product *j* is:

$$U_{nj} = V(y_{nj}, x_{nj}, \beta_n) + \epsilon_{nj}$$

• y_{nj} is endogenous, $y_{nj} \not\perp \epsilon_{nj}$

We assume that there is an instrument z_{nj}, related with y_{nj} by first stage:

$$y_{nj} = W(z_{nj}, \gamma) + \mu_{nj} \tag{4}$$

Assume that $\epsilon_{nj}, \mu_{nj} \perp z_{nj}, \epsilon_{nj} \not\perp \mu_{nj}$ $\epsilon_{nj} \not\perp \mu_{nj}$ implies that y_{nj} and ϵ_{nj} are correlated

Endogeneity in DCM: 2. Control Function

- \blacksquare Therefore, μ is the source of the endogeneity
- We want to to some extent control it
- We can do a CEF decomposition (given μ_{nj}) for ϵ_{nj} :

$$\epsilon_{nj} = \underbrace{E(\epsilon_{nj}|\mu_{nj})}_{CF(\mu_{nj},\lambda)} + \tilde{\epsilon}_{nj}$$

- By construction: $\tilde{\epsilon}_{nj} \perp \mu_{nj}$
- Thus, we have $\tilde{\epsilon}_{nj} \perp y_{nj}$ (y is correlated with ϵ only through μ)
- We call CF(μ_{nj}, λ) a control function, where λ is some parameter

Then we can rewrite the utility function as

$$U_{nj} = V(y_{nj}, x_{nj}, \beta_n) + CF(\mu_{nj}, \lambda) + \tilde{\epsilon}_{nj}$$
(5)

- Step 1: Estimate first stage equation (4), get residual of the first stage μ̂
- Step 2: Plug $\hat{\mu}$ in the CF (5)
- Step 3: Estimate equation (5) using simple Logit
- In step 2, we need to assume a functional form for CF
- Usually we can choose flexible non-parametric form (e.g. high-order polynomials)

Endogeneity in DCM: 2. Control Function

- The logic of CF approach is as follows:
 - We know that instrument z is not correlated with the error ϵ
 - Thus, endogenous variable y correlates with ε only through first stage error μ, but not IV z
 - Then by controlling the correlated parts of μ and ϵ , we can eliminate the correlation of y and ϵ
- CF is a pretty general method
- But it requires you to set a function form for CF

- Now we go back to our paper
- We choose BLP method to tackle the endogeneity issue
- Our utility function has a nested error structure
- Choice is made at individual level
- Endogeneity happens at location level: wages, housing prices, amenities, and Hukou policies
- So we can estimate the model by adding location fixed effect, then regress this fixed effect on endogeneous variables with IV

Labor Supply: Location Choices

BLP model:

$$V_{ikt}^{k_0} = \beta_h^e WithinHometown_{ikt} + \beta_p^e WithinProvince_{ikt} + \delta_{kt}^e + \epsilon_{ikt}$$

$$\delta_{kt}^e = \beta_w^e (w_{kt}^e - \zeta r_{kt}) + \beta_h^e Hukou + \beta_a^e a_{kt} + \nu_{kt}^e$$

First step: maximum likelihood, get δ^e_{kt}.
Second step:

$$\Delta \delta_{kt}^{e} = \beta_{w}^{e} (\Delta w_{kt}^{e} - \zeta \Delta r_{kt}) + \beta_{h}^{e} \Delta \mathsf{Hukou} + \beta_{a}^{e} \Delta a_{kt} + \Delta \epsilon_{kt}^{e}$$

- ζ: expenditure share on housing: mortgage share 40%, rent share 30%, set ζ = 0.35; alternatively, set ζ = 0.62 following Diamond (2016).
- Instruments: choose from a large set of potential IVs using Lasso (Chernozhukov et al. 2018).

Table 7: Labor Supply Estimation (Location Choice, BLP first stage)

Worker Type	Year	Within Home- town (East)	Within Home- town (Middle)	Within Home- town (West)	Within Home- town (North- east)	Within Province
Low-Skilled Worker	2005	5.641***	6.084***	5.906***	6.317***	3.054***
		(0.021)	(0.027)	(0.039)	(0.013)	(0.008)
Low-Skilled Worker	2010	4.743***	5.466***	4.639***	6.099***	2.993***
		(0.02)	(0.017)	(0.033)	(0.034)	(0.031)
Low-Skilled Worker	2015	4.732***	5.118***	4.525***	5.767***	4.035***
		(0.025)	(0.034)	(0.031)	(0.014)	(0.01)
High-Skilled Worker	2005	5.922***	6.635***	6.251***	6.935***	2.689***
		(0.03)	(0.033)	(0.04)	(0.025)	(0.01)
High-Skilled Worker	2010	5.113***	5.548***	5.122***	5.874***	3.212***
		(0.026)	(0.039)	(0.04)	(0.016)	(0.011)
High-Skilled Worker	2015	4.795***	5.115***	4.757***	5.672***	3.818***
		(0.027)	(0.001)	(0.03)	(0.019)	(0.012)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Back

Second Step: Lasso for each endogenous variable

Variables	Wage - 0.35 * Price (Low-Skilled)	Wage - 0.35 * Price (High-Skilled)	Amenity	Hukou Index
employment bartik	\checkmark	\checkmark		~
migrant bartik			\checkmark	\checkmark
wage bartik			\checkmark	\checkmark
export bartik	\checkmark	\checkmark		\checkmark
citation bartik		\checkmark		
patent bartik	\checkmark	\checkmark	\checkmark	\checkmark
patent iv	\checkmark	\checkmark		\checkmark
import bartik	\checkmark			\checkmark
net export bartik		\checkmark		
openness shock	\checkmark	\checkmark	\checkmark	√
robot bartik	,	√	,	~
geographics	~	√	~	~
land supply	\checkmark	\checkmark	\checkmark	~
export bartik × geographics	,			~
export bartik × land supply	\checkmark		/	~
openness snock × land supply	/	/	V	*
and supply × geographics	\checkmark	\checkmark	~	~
migrant bartik × robot bartik			/	*
wage bartik × geographics	/		v	v
patent bartik × geographics	\checkmark			✓

Table 8: First stage statistics of BLP second stage IV regression

VARIABLES	(1) First Stage R-squared	(2) First Stage F-value
Δ Log(HS Wage-0.35*Price) Δ Log(LS Wage-0.35*Price) Δ Amenity Index	0.6684 0.5096 0.1702 0.2560	99.45 46.10 16.57

▶ Back

Table 9: Labor Supply Estimation (Location Choice, BLP second stage)

	(1)	(2)	(3)	(4)
VARIABLES	$\Delta \delta_{high}$	$\Delta \delta_{low}$	$\Delta \delta_{high}$	$\Delta \delta_{low}$
Δ Log(High-skilled Wage - 0.35*Price)	0.0850		0.0525	
	(0.160)		[0.462]	
Δ Log(Low-skilled Wage - 0.35*Price)		0.334		2.620***
		(0.237)		[0.784]
Δ Amenity Index	0.0608	0.110*	0.996***	0.148
	(0.0504)	(0.0575)	[0.288]	[0.485]
Δ Hukou Index	-0.0635***	-0.0345	-0.399***	-0.579***
	(0.0203)	(0.0217)	[0.0687]	[0.0770]
Observations	480	480	451	451
R-squared	0.020	0.029	0.080	0.156
Model	OLS	OLS	IV	IV

Table 10: Labor Supply Estimation (Location Choice, BLP second stage)

	(1)	(2)	(3)	(4)
VARIABLES	$\Delta \delta_{high}$	$\Delta \delta_{low}$	$\Delta \delta_{high}$	$\Delta \delta_{low}$
Δ Log(High-skilled Wage - 0.35*Price)	0.0873		0.546	
	(0.160)		[0.413]	
Δ Log(Low-skilled Wage - 0.29*Price)		0.344		2.367***
		(0.238)		[0.698]
Δ Amenity Index	0.0612	0.110*	0.370***	0.153
	(0.0504)	(0.0576)	[0.140]	[0.277]
Δ Hukou Index	-0.0645***	-0.0358*	-0.345***	-0.537***
	(0.0203)	(0.0217)	[0.0705]	[0.0784]
Observations	480	480	451	451
R-squared	0.020	0.030	0.072	0.148
Model	OLS	OLS	IV	IV

Table 11: Labo	or Supply	Estimation	(Sector	Choice)
----------------	-----------	------------	---------	---------

Year	Skill	Coefficient on w^a
2005	Low-Skilled	1.377***
		(0.006)
2010	Low-Skilled	1.269***
		(0.006)
2015	Low-Skilled	1.454***
0005		(0.011)
2005	High-Skilled	1.1/5***
2010		(0.045)
2010	Hign-Skilled	1.200****
2015	High Skillod	(0.015)
2015	r ligh-Skilled	(0.010)
		(0.019)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Mechanism

Low-skilled workers:

- Patent $\uparrow \Rightarrow$ wage $\uparrow \Rightarrow$ migrants $\uparrow \uparrow$ (Important)
- Patent $\uparrow \Rightarrow$ amenity $\uparrow \Rightarrow$ migrants \uparrow (Less Important)
- High-skilled workers:
 - Patent $\uparrow \Rightarrow$ wage $\uparrow \Rightarrow$ migrants \uparrow (Less Important)
 - Patent $\uparrow \Rightarrow$ amenity $\uparrow \Rightarrow$ migrants \uparrow (Important)
 - Patent $\uparrow \Rightarrow$ skilled-ratio $\downarrow \Rightarrow$ amenity $\downarrow \Rightarrow$ migrants \downarrow (Important)

- The endogenous variables of city k in year t include $\Delta_0 = \{H_0, L_0, W_0, R_0, x_0\}$
- Let N^{a,s}_{k0} and N^{na,s}_{k0} be the number of skill s agricultural and non-agricultural hukou workers from hometown city k0
- Let q denote the iteration time
- Within each iteration, we use vâr to denote the temporary updating result of some variable var
- At the beginning of the q-th iteration, we have Δ_{q-1} .

■ Step 1: update workers' utility values using endogenous variables derived from the last iteration (q − 1)

$$\hat{\delta}_{k}^{e} = \beta_{e}^{w} (w_{na,k|q-1}^{e} - \zeta r_{k|q-1}) + \beta_{e}^{h} hukou_{k|q-1} + \beta_{e}^{a} a_{k|q-1} + \nu_{k}^{e}$$
$$\hat{V}_{ik}^{k_{0}} = \beta_{e}^{h} \text{ WithinHometown }_{ik|q-1}\beta_{e}^{p} \text{ WithinProvince }_{ik|q-1} + \hat{\delta}_{k}^{e}$$
$$E[\hat{W}_{ik_{0}}^{na}] = ln[\sum_{k \in K} exp(\hat{V}_{ik}^{k_{0}})]$$

Solving the Equilibrium: Algorithm

Step 2: update migration flows using the logit-form migration equations

$$\begin{split} \hat{H}_{k}^{na} &= \sum_{i \in N^{na,H}} \frac{\exp(\hat{V}_{ik})}{\sum_{r}^{K} \exp(\hat{V}_{ir})} + \sum_{i \in N^{a,H}} \frac{\exp(\hat{W}_{ik_{0}}^{na})}{\exp(\hat{W}_{i}^{a}) + \exp(\hat{W}_{ik_{0}}^{na})} \cdot \frac{\exp(\hat{V}_{ik})}{\sum_{r}^{K} \exp(\hat{V}_{ir})} \\ \hat{H}_{k}^{a} &= \sum_{i \in N_{k}^{a,H}} \frac{\exp(\hat{W}_{i}^{a})}{\exp(\hat{W}_{i}^{a}) + \exp(\hat{W}_{ik_{0}}^{na})} \\ \hat{L}_{kt}^{na} &= \sum_{i \in N^{na,L}} \frac{\exp(\hat{V}_{ik})}{\sum_{r}^{K} \exp(\hat{V}_{ir})} + \sum_{i \in N^{a,L}} \frac{\exp(\hat{W}_{ik_{0}}^{na})}{\exp(\hat{W}_{i}^{a}) + \exp(\hat{W}_{ik_{0}}^{na})} \cdot \frac{\exp(\hat{V}_{ik})}{\sum_{r}^{K} \exp(\hat{V}_{ir})} \\ \hat{L}_{kt}^{a} &= \sum_{i \in N_{k}^{a,L}} \frac{\exp(\hat{W}_{i}^{a})}{\exp(\hat{W}_{i}^{a}) + \exp(\hat{W}_{ik_{0}}^{na})} \end{split}$$

Step 3: update wages in each city using the wage equilibrium equation

$$\begin{split} \hat{w}_{ag,k}^{H} &= \hat{w}_{ag,k}^{L} = \beta_{0}^{1} + \gamma_{ag} \ln(\hat{H}_{ag,k} + \hat{L}_{ag,k}) + \epsilon_{1} \\ \hat{w}_{na,k}^{H} &= \beta_{0}^{2} + \gamma_{HA}A_{k} + \gamma_{na,LH} \ln \hat{H}_{na,k} + \gamma_{na,LL} \ln \hat{L}_{na,k} + \epsilon_{2} \\ \hat{w}_{na,k}^{L} &= \beta_{0}^{3} + \gamma_{LA}A_{k} + \gamma_{na,LH} \ln \hat{H}_{na,k} + \gamma_{na,LL} \ln \hat{L}_{na,k} + \epsilon_{3} \end{split}$$

Step 4: update the housing price in each city using housing equilibrium equation

$$\hat{r_k} = \beta_0^4 + \left[\gamma_1^{hd} + \gamma_2^{hd} \times \ln(Slope_k)\right] \ln(\hat{L}_k^{na} e^{\hat{w}_{na,k}^L} + \hat{H}_k^{na} e^{\hat{w}_{na,k}^H}) + \epsilon_4$$

Step 5: update the amenity in each city using the amenity determination equation

$$\hat{a}_{k} = \beta_{0}^{5} + \gamma_{1}^{a}A_{k} + \gamma_{2}^{a}\ln\left(\frac{\hat{H}_{k}^{na}}{\hat{L}_{k}^{na}}\right) + \epsilon_{5}$$

Having these predicted values of the endogenous variables, we use the following updating rule to get the values of all variables for the next iteration:

$$\mathbf{\Delta}_{\mathbf{q}} = \zeta \mathbf{\Delta}_{\mathbf{q}-1} + (1-\zeta) \hat{\mathbf{\Delta}}_{\mathbf{q}-1} \tag{6}$$

• $0 < \zeta < 1$, iterate until convergence is achieved

Counterfactual 1: Patents Reduce to 2005 Level

- Change patent to the 2005 level
- Simulate labor supply, wages, housing price, and amenities in the general equilibrium framework

Table 12: Eliminating Innovation Growth: Patent Citation Change in Log Points

	Mean	Std Dev	Max	Min
National	-1.766	1.059	1.792	-5.857
Eastern Region	-1.879	0.706	-0.231	-3.734
Middle Region	-2.128	1.017	0.274	-5.857
Northeastern Region	-0.646	0.879	1.792	-1.861
Western Region	-1.747	1.213	1.704	-5.412

Counterfactual 1: Patents Reduce to 2005 Level

Table 13: Eliminating Innovation Growth: Migration and Population Changes

	Original Eq	Counterfactual	Change
Panel A. Migration across Prefectures			
Total migration	27410758	21240364	-22.51%
High-skilled migration	5956344	6420181	7.79%
Low-skilled migration	21454414	14820184	-30.92%
Panel B. Population			
High-skilled pop in East	25794098	26002678	0.81%
High-skilled pop in Middle	9744213	9345408	-4.09%
High-skilled pop in NE	4425533	4634316	4.72%
High-skilled pop in West	7039878	7021317	-0.26%
Low-skilled pop in East	95413904	92231360	-3.34%
Low-skilled pop in Middle	71139016	72099648	1.35%
Low-skilled pop in NE	20001966	21833880	9.16%
Low-skilled pop in West	42062284	42452280	0.93%
Panel C. Urban Skill Ratio			
Skill ratio in Urban East	0.377	0.487	29.18%
Skill ratio in Urban Middle	0.323	0.453	40.25%
Skill ratio in Urban NE	0.359	0.342	-4.74%
Skill ratio in Urban West	0.349	0.447	28.08%

Migrations decline dramatically for low-skilled workers.

Counterfactual 1: Patents Reduce to 2005 Level

Table 14: Eliminating Innovation Growth: Wage Changes

Skill	Sector	Region	Original Eq	Counterfactual	Change
Average Wage of Low-skilled	Agr	East Middle Northeast West	15495 11726 12046 10460	14863 11384 11882 10211	-4.08% -2.92% -1.36% -2.38%
	Non-agr	East Middle Northeast West	51550 43564 43199 46864	13335 11175 22680 14268	-74.13% -74.35% -47.50% -69.56%
Average Wage of High-skilled	Agr	East Middle Northeast West	15495 11726 12046 10460	14863 11384 11882 10211	-4.08% -2.92% -1.36% -2.38%
	Non-agr	East Middle Northeast West	64749 51148 50505 57480	14052 10826 26913 15618	-78.30% -78.83% -46.71% -72.83%

Wages for both skills decline in similar magnitude.

Table 15: Eliminating Innovation Growth: Housing Price and Amenity Changes

	Original Eq	Counterfactual	Change
Panel A. Housing Price			
Average Housing Price in East	7268.85	3544.92	-51.23%
Average Housing Price in Middle	4360.26	1967.82	-54.87%
Average Housing Price in Northeast	4327.30	3470.06	-19.81%
Average Housing Price in West	4691.29	2484.91	-47.03%
Panel B. Amenity			
Average Amenity in East	2.685	1.089	-59.44%
Average Amenity in Middle	2.564	0.856	-66.63%
Average Amenity in Northeast	2.823	2.140	-24.18%
Average Amenity in West	2.861	1.395	-51.22%

Amenity and housing price decline dramatically.

Counterfactual 1: Patents Reduce to 2005 Level

Table 16: Eliminating Innovation Growth: Willingness to Pay

Skill	Hukou Type	Region	WTP
Average WTP of Low-skilled	Agr	East Middle Northeast West	-0.095 -0.080 -0.043 -0.106
	Non-agr	East Middle Northeast West	-1.501 -1.485 -0.874 -1.408
Average WTP of High-skilled	Agr	East Middle Northeast West	-0.164 -0.150 -0.110 -0.150
	Non-agr	East Middle Northeast West	-0.535 -0.584 -0.349 -0.532

Eliminating innovation harms all groups of workers, especially workers with non-agr hukou.

Counterfactual 1: Patents Reduce to 2005 Level

Table 17: Eliminating Innovation Growth: Overall Inequality

	Original Eq	Counterfactual	Change
Panel A. Wage			
Gini Index	0.432	0.223	-48.4%
P90/P10	7.293	2.647	-63.7%
P90/P50	4.521	1.901	-58.0%
Panel B. Real Income			
Gini Index	0.420	0.207	-50.7%
P90/P10	7.000	2.452	-65.0%
P90/P50	4.339	1.788	-58.8%

Table 18: Eliminating Innovation Growth: Gini Coefficient by Hukou Type

	Original Eq	Counterfactual	Change
Panel A. Agr Hukou			
Wage	0.381	0.159	-58.3%
Real Income	0.368	0.156	-57.6%
Welfare	0.068	0.074	8.8%
Panel B. Non-agr Hukou			
Wage	0.165	0.261	58.1%
Real Income	0.160	0.258	61.3%
Welfare	0.102	0.185	81.4%

- There are three main channels for technology to affect migration
 - Wage effect attracts migration
 - Direct amenity effect attracts migration
 - Indirect amenity effect through changes of skill ratio
- We now try to decompose the overall effect of tech growth on migration into these three channels

Figure 7: Channel Analysis of Patent's Effect on High-skilled Migration

Figure 8: Channel Analysis of Patent's Effect on Low-skilled Migration

Table 19: Channel Decomposition of Patent's Effect on Migration

	Indirect Amenity Effect	Direct Amenity Effect	Wage Effect
Panel.A High-skilled Migration			
Coefficient Change	-0.293	0.997	0.029
Proportional Explained	-40.0%	136.0%	4.0%
Panel.B Low-skilled Migration			
Coefficient Change	-0.016	0.057	1.129
Proportional Explained	-1.4%	4.9%	96.5%

Conclusion

- Patent growth in China during 2005 to 2015 increased wages for both low- and high-skilled workers
- Low-skilled workers care more about wages while high-skilled workers care more about amenities
- Patent growth attracted more low-skilled workers, reduced the skill ratio, which reduced amenities and discourages high-skilled migrants
- Technology growth in China during the last twenty years DID NOT lead to a gentrification and benefited workers with different skills

Summary Statistics

VARIABLES	(1) N	(2) Mean	(3) SD	(4) Min	(5) Max
Migrant/Employment	609	0.16	0.16	0.00	0.90
High-Skilled Migrant/High-Skilled Employment	609	0.08	0.09	0.00	0.59
Low-Skilled Migrant/Low-Skilled Employment	609	0.19	0.19	0.00	0.96
Citations of Patents	571	2903.20	11265.63	2.00	157306.00
High-skilled wage	595	48127.27	14217.58	15928.67	122615.09
Low-skilled wage	595	39474.81	11309.51	6007.17	91138.81
City-level average house price	570	4822.948	3086.891	1589.353	33942.34
Doctors per 10,000 residents	576	20.37	8.18	6.92	75.19
Hospitals per 10,000 residents	576	0.60	0.65	0.09	6.89
Kilometers of road per 10,000 residents	575	33.38	18.72	1.44	152.09
Highway passengers per 10,000 residents	574	24.30	121.30	1.15	2855.72
High-speed Railway Connected	577	0.41	0.49	0.00	1.00
PM 2.5	572	44.64	20.05	4.15	101.19
Heavily polluted days	576	6.85	10.91	0.00	55.89
Polluted days	576	70.37	56.32	0.00	237.05
Teacher-student ratio in primary schools	577	0.06	0.01	0.00	0.13
Teacher-student ratio in middle schools	576	0.08	0.02	0.00	0.20
Number of colleges	565	8.45	14.55	1.00	90.00
Number of Project 985 universities	578	0.13	0.64	0.00	8.00
Number of Project 211 universities	578	0.38	1.75	0.00	23.00
Log Slope	575	0.94	1.13	-6.89	2.91

Initial Skilled Ratio and Change in Skilled Ratio

Figure 9: Initial Skilled Ratio and Change in Skilled Ratio

Table 20: Model Fit

Variables	Model	Data	Difference
Total Migrants	27410758	26910338	1.86%
Total High-skill Migrants	5956344	5859850	1.65%
Total Low-skill Migrants	21454414	21050488	1.92%
Total Migration in East	18515916	18109484	2.24%
Total Migration in Middle	4098104	4014531	2.08%
Total Migration in Northeast	1081882	1065493	1.54%
Total Migration in West	3714857	3720829	0.16%
Mean Wages of High-skill in Agr	12723	12727	-0.036%
Mean Wages of High-skill in Non-agr	56917	56829	0.155%
Mean Wages of Low-skill in Agr	12723	12727	-0.036%
Mean Wages of Low-skill in Non-agr	46861	46764	0.21%
Mean Housing Price	6161.8	6161.4	-0.0067%
Mean Amenity	1.352	1.351	0.07%

Model Fit

Figure 10: Model Fit of Migrants

Model Fit

Figure 11: Model Fit of Wages

Model Fit

Figure 12: Model Fit of Housing Price and Amenity

Spatial Distribution of Patent Shock

Figure 13: Spatial Distribution of Log Patent Growth (2005 - 2015)

Figure 14: Effect of Patent Shock on Wages for High- and Low-skilled Workers

Figure 15: Effect of Patent Shock on Number of High- and Low-skilled Migrants

9 / 21

Figure 16: Effect of Patent Shock on Number of High- and Low-skilled Employment

10 / 21

Descriptive Statistics

Figure 17: Patent Shock and Change in Skilled Ratio

Figure 18: Effect of Patent Shock on Housing Price and Amenity

Back

Patent growth and labor supply

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	∆ Log Em- ployment	∆ Log High-Skilled Employ- ment	∆ Log Low-Skilled Employ- ment	∆ Log High-skilled Migrants	∆ Log Low-skilled Migrants	∆ Employ- ment Skilled Ratio
Panel A: OLS						
Δ Log(Patent)	0.0903**	0.0157	0.127**	0.114	0.192***	-0.0267***
	(0.0397)	(0.0362)	(0.0509)	(0.0817)	(0.0724)	(0.00993)
Panel B: Reduced Form						
Patent shock	1.256***	-0.0877	2.007***	0.976**	2.025***	-0.421***
	(0.235)	(0.199)	(0.242)	(0.389)	(0.320)	(0.0435)
Panel C: IV						
Δ Log(Patent)	1.103***	-0.111	1.795***	0.675**	1.874***	-0.373***
	(0.302)	(0.187)	(0.442)	(0.312)	(0.540)	(0.0888)
Year FE	Х	Х	Х	Х	Х	Х
City FE	Х	Х	Х	Х	Х	Х

Patent growth, wage, housing price, and amenity

	(1)	(2)	(3)	(4)
VARIABLES	∆ Log High-skilled Wage	∆ Log Low-skilled Wage	∆ Log(Housing Price)	Δ Amenity Index
Panel A: OLS				
Δ Log(Patent)	-0.00123	-0.00769	-0.0249	0.0954
	(0.0162)	(0.0174)	(0.0198)	(0.0799)
Panel B: Reduced Form				
Patent shock	0.385***	0.351***	0.502***	0.378
	(0.0887)	(0.0795)	(0.115)	(0.307)
Panel C: IV				
Δ Log(Patent)	0.402***	0.348***	0.469**	0.428
	(0.146)	(0.134)	(0.199)	(0.306)
Year FE	Х	Х	Х	Х
City FE	Х	Х	Х	Х

Estimation of the Labor Demand in the Non-agricultural Sector (Patent)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Δ Log High-skilled City Population 0.00306 0.00559 -0.77* -0.556 Δ Log Low-skilled City Population -0.0554** -0.0653** 0.00559 0.394) Δ Log Low-skilled City Population -0.0554** -0.0653** 0.00559 0.107 -0.0863* Patent shock -0.0207 0.100 0.978*** (0.426) (0.387) Migrant bartik for high-skill workers -0.564*** 0.404*** 0.659*** -0.0207 Migrant bartik for low-skill workers -0.162 0.1122 (0.199) -0.162 0.721** -0.253
Δ Log Low-skilled City Population -0.0584** -0.0635** 0.107 -0.0860 (0.426) (0.387) Patent shock (0.0282) (0.0319) 0.0007 0.100 0.978*** (0.426) (0.387) Migrant bartik for high-skill workers 0.564*** 0.404*** 0.659*** </td
Patent shock -0.0207 0.100 0.978*** (0.125) (0.0989) (0.175) Migrant bartik for high-skill workers 0.564*** 0.404*** 0.659*** (0.142) (0.112) (0.199) Migrant bartik for low-skill workers -0.162 0.721** -0.253
Migrant bartik for high-skill workers 0.564*** 0.404*** 0.659*** (0.142) (0.112) (0.199) Migrant bartik for low-skill workers -0.162 0.721** -0.253
Migrant bartik for low-skill workers -0.162 0.721** -0.253
(0.357) (0.282) (0.500)
Constant 0.543*** 0.545*** -0.226 -0.832*** -0.371 0.185* 0.174* (0.0233) (0.0263) (0.348) (0.275) (0.488) (0.0980) (0.0889)
Observations 484 484 484 484 484 484 484 484 484
R-squared 0.174 0.142
Model OLS OLS First stage First stage IV GMM IV GMM
Cragg-Donald Wald F 2.266 2.266
Sanderson-Windmeijer F 6.819 9.238 9.247

Table 21: Estimation of the Labor Demand in the Non-agricultural Sector

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Estimation of the Amenity Market (Patent)

	(1)	(2)	(3)	(4)
VARIABLES	Δ Amenity Index	∆ Log High-skilled City Population Ratio	Δ Log Patent	Δ Amenity Index
Δ Log Patent	0.266*** (0.0360)			0.580*** (0.0960)
Δ High-skilled City Population Ratio	0.0274 (0.383)			1.596 (1.872)
Patent shock	()	-0.0812*** (0.0236)	0.723*** (0.220)	()
Wage Bartik IV for high-skilled workers		0.0872	-0.523	
Wage Bartik IV for low-skilled workers		0.145**	1.529**	
Constant	0.325*** (0.0726)	-0.0283** (0.0140)	0.00193 (0.130)	-0.312** (0.132)
Observations	484	484	484	484
R-squared	0.104			
Model	OLS	First stage	First stage	IV GMM
Cragg-Donald Wald F				7.948
Sanderson-Windmeijer F		12.05	19.40	

Table 22: Estimation of the Amenity Market

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Tests of Bartik Shocks

Bartik	(1) Citation	(2) Migrant High-Skilled	(3) Migrant Low-Skilled	(4) Wage High-Skilled	(5) Wage Low-Skilled
Panel A: 2010					
Mean	1.269	0.727	0.729	0.669	0.665
Standard deviation	0.326	0.269	0.277	0.102	0.102
Effective Sample Size (1/HHI)	13.834	7.168	4.295	10.131	5.763
Panel B: 2015					
Mean	1.481	0.741	0.724	1.143	1.136
Standard deviation	0.533	0.434	0.447	0.099	0.097
Effective Sample Size $(1/HHI)$	19.058	8.999	5.228	10.597	6.046

Table 23: Summary Statistics of Bartik Shock

▶ Back

Table 24: Balance Test of Bartik-type Shock of Citation

VARIABLES	2010 Coefficient	S.E.	2015 Coefficient	S.E.
GDP Growth Rate	0.00150	(0.00303)	0.000899	(0.00244)
Log Population Density	0.00166	(0.00871)	-0.00254	(0.00493)
Log Fiscal Expenditure	0.0168	(0.0226)	-0.00361	(0.0283)
Log Retail Sale	-0.00131	(0.0128)	-0.0140	(0.00871)
Log Above-Scale Firm Profit	-0.0956	(0.0868)	0.0287	(0.108)
Log Number of College Students	-0.00429	(0.0204)	-0.00376	(0.0200)

Back

Table 25: Balance Test of Bartik-type Shock of Migrants

VARIABLES	2010		2015	
	Coefficient	S.E.	Coefficient	S.E.
Panel A: High-Skilled				
GDP Growth Rate	-0.00278	(0.00673)	0.00250	(0.00520)
Log Population Density	-0.00762	(0.00779)	-0.0202*	(0.0108)
Log Fiscal Expenditure	-0.0415	(0.0573)	-0.0165	(0.0942)
Log Retail Sale	0.0195	(0.0496)	-0.0145	(0.0665)
Log Above-Scale Firm Profit	-0.0109	(0.118)	0.0746	(0.106)
Log Number of College Students	0.725	(0.476)	0.258	(0.559)
Panel B: Low-Skilled				
GDP Growth Rate	-0.00629**	(0.00230)	-0.00404	(0.00298
Log Population Density	0.00242	(0.00196)	0.00609	(0.00486)
Log Fiscal Expenditure	-0.0382	(0.0249)	-0.0357	(0.0395)
Log Retail Sale	-0.00912	(0.0123)	-0.0432*	(0.0232)
Log Above-Scale Firm Profit	-0.0790	(0.0683)	0.0483	(0.138)
Log Number of College Students	0.403	(0.245)	0.143	(0.261)

Table 26: Balance Test of Bartik-type Shock of Wages

VARIABLES	2010		2015	
	Coefficient	S.E.	Coefficient	S.E.
Panel A: High-Skilled				
GDP Growth Rate	-0.00591	(0.00836)	-0.00479	(0.00536)
Log Population Density	0.00448	(0.0120)	-0.0149	(0.0133)
Log Fiscal Expenditure	0.0220	(0.0703)	-0.0140	(0.117)
Log Retail Sale	-0.00487	(0.0299)	-0.0370	(0.0660)
Log Above-Scale Firm Profit	-0.114	(0.273)	0.144	(0.289)
Log Number of College Students	-1.807**	(0.683)	-2.081***	(0.688)
Panel B: Low-Skilled				
GDP Growth Rate	0.0124	(0.0110)	0.00377	(0.00721)
Log Population Density	-0.00680	(0.00533)	-0.0121*	(0.00609)
Log Fiscal Expenditure	-0.00151	(0.0765)	-0.0493	(0.113)
Log Retail Sale	-0.0129	(0.0363)	-0.0468	(0.0525)
Log Above-Scale Firm Profit	-0.212	(0.220)	0.102	(0.377)
Log Number of College Students	-0.672*	(0.327)	-0.653	(0.444)

- Bayer, Patrick, Fernando Ferreira, and Robert McMillan. 2007. "A Unified Framework for Measuring Preferences for Schools and Neighborhoods." *Journal of Political Economy* 115 (4):588–638.
- Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. "Automobile Prices in Market Equilibrium." *Econometrica* 63 (4):841–890.
- Card, David. 2009. "Immigration and Inequality." *American Economic Review* 99 (2):1–21.
- Diamond, Rebecca. 2016. "The Determinants and Welfare Implications of US Workers' Diverging Location Choices by Skill: 1980-2000." American Economic Review 106 (3):479–524.