Frontier Topics in Empirical Economics: Week 1 Outline of Causal Inference

Zibin Huang ${ }^{1}$

${ }^{1}$ College of Business, Shanghai University of Finance and Economics
November 30, 2023

Plan of This Course

Plan of This Course

- Basic causal inference and model selection (Week 1-4)

Potential Outcome Framework, RCT, matching vs regression, non-parametric method, machine learning, DAG framework

- IV (Week 5-7)

IV, LATE, GMM, MTE, Bartik IV

- Causal inference with panel data (Week 8-9) Basic DID and event study, pre-trend testing, synthetic control, staggered DID
- Other Topics (Week 10-11)

RDD, Std err issues

- Introduction to discrete choice model (Week 12-13) Logit, Probit, Nested Logit, Control function, BLP

Plan of This Course

- Basic causal inference and model selection (Week 1-4)

Potential Outcome Framework, RCT, matching vs regression, non-parametric method, machine learning, DAG framework

- IV (Week 5-7)

IV, LATE, GMM, MTE, Bartik IV

- Causal inference with panel data (Week 8-9) Basic DID and event study, pre-trend testing, synthetic control, staggered DID
- Other Topics (Week 10-11)

RDD, Std err issues

- Introduction to discrete choice model (Week 12-13) Logit, Probit, Nested Logit, Control function, BLP

Plan of This Course

- Basic causal inference and model selection (Week 1-4)

Potential Outcome Framework, RCT, matching vs regression, non-parametric method, machine learning, DAG framework

- IV (Week 5-7)

IV, LATE, GMM, MTE, Bartik IV

- Causal inference with panel data (Week 8-9)

Basic DID and event study, pre-trend testing, synthetic control, staggered DID

- Other Topics (Week 10-11)

RDD, Std err issues

- Introduction to discrete choice model (Week 12-13) Logit, Probit, Nested Logit, Control function, BLP

Plan of This Course

- Basic causal inference and model selection (Week 1-4)

Potential Outcome Framework, RCT, matching vs regression, non-parametric method, machine learning, DAG framework

- IV (Week 5-7)

IV, LATE, GMM, MTE, Bartik IV

- Causal inference with panel data (Week 8-9)

Basic DID and event study, pre-trend testing, synthetic control, staggered DID

- Other Topics (Week 10-11) RDD, Std err issues
- Introduction to discrete choice model (Week 12-13) Logit, Probit, Nested Logit, Control function, BLP

Plan of This Course

- Basic causal inference and model selection (Week 1-4)

Potential Outcome Framework, RCT, matching vs regression, non-parametric method, machine learning, DAG framework

- IV (Week 5-7)

IV, LATE, GMM, MTE, Bartik IV

- Causal inference with panel data (Week 8-9)

Basic DID and event study, pre-trend testing, synthetic control, staggered DID

- Other Topics (Week 10-11)

RDD, Std err issues

- Introduction to discrete choice model (Week 12-13)

Logit, Probit, Nested Logit, Control function, BLP

Plan of This Course

Plan of This Course

- The goal of this course is to let all students avoid being regression monkeys
- What is regression monkey? \Rightarrow Run regs without creativity
- This is no economist, this is BAD statistician!
- This course aims to teach you

Plan of This Course

- The goal of this course is to let all students avoid being regression monkeys
- What is regression monkey? \Rightarrow Run regs without creativity
- Running regressions without knowing why
- Only know very basic statistical off-the-shelf methods
- Have no economic sense, do not know any economic theory
- This is no economist, this is BAD statistician!
- This course aims to teach you

Plan of This Course

- The goal of this course is to let all students avoid being regression monkeys
- What is regression monkey? \Rightarrow Run regs without creativity
- Running regressions without knowing why
- Only know very basic statistical off-the-shelf methods
- Have no economic sense, do not know any economic theory
- This is no economist, this is BAD statistician!
- This course aims to teach you

Plan of This Course

- The goal of this course is to let all students avoid being regression monkeys
- What is regression monkey? \Rightarrow Run regs without creativity
- Running regressions without knowing why
- Only know very basic statistical off-the-shelf methods
- Have no economic sense, do not know any economic theory
- This is no economist, this is BAD statistician!
- This course aims to teach you

Plan of This Course

- The goal of this course is to let all students avoid being regression monkeys
- What is regression monkey? \Rightarrow Run regs without creativity
- Running regressions without knowing why
- Only know very basic statistical off-the-shelf methods
- Have no economic sense, do not know any economic theory
- This is no economist, this is BAD statistician!
- This course aims to teach you

Plan of This Course

- The goal of this course is to let all students avoid being regression monkeys
- What is regression monkey? \Rightarrow Run regs without creativity
- Running regressions without knowing why
- Only know very basic statistical off-the-shelf methods
- Have no economic sense, do not know any economic theory

■ This is no economist, this is BAD statistician!

- This course aims to teach you

Plan of This Course

- The goal of this course is to let all students avoid being regression monkeys
- What is regression monkey? \Rightarrow Run regs without creativity
- Running regressions without knowing why
- Only know very basic statistical off-the-shelf methods
- Have no economic sense, do not know any economic theory

■ This is no economist, this is BAD statistician!

- This course aims to teach you
- The logic behind regression and causal inference
- Statistical tools beyond regression in causal inference
- How to regularize data with your economic theory and intuition

Plan of This Course

- The goal of this course is to let all students avoid being regression monkeys
- What is regression monkey? \Rightarrow Run regs without creativity
- Running regressions without knowing why
- Only know very basic statistical off-the-shelf methods
- Have no economic sense, do not know any economic theory

■ This is no economist, this is BAD statistician!

- This course aims to teach you
- The logic behind regression and causal inference
- Statistical tools beyond regression in causal inference
- How to regularize data with your economic theory and intuition

Plan of This Course

- The goal of this course is to let all students avoid being regression monkeys
- What is regression monkey? \Rightarrow Run regs without creativity
- Running regressions without knowing why
- Only know very basic statistical off-the-shelf methods
- Have no economic sense, do not know any economic theory

■ This is no economist, this is BAD statistician!

- This course aims to teach you
- The logic behind regression and causal inference
- Statistical tools beyond regression in causal inference
- How to regularize data with your economic theory and intuition

Plan of This Course

- The goal of this course is to let all students avoid being regression monkeys
- What is regression monkey? \Rightarrow Run regs without creativity
- Running regressions without knowing why
- Only know very basic statistical off-the-shelf methods
- Have no economic sense, do not know any economic theory

■ This is no economist, this is BAD statistician!

- This course aims to teach you
- The logic behind regression and causal inference
- Statistical tools beyond regression in causal inference
- How to regularize data with your economic theory and intuition

Motivating Example: Female Labor Participation

This is an example from Professor Chao Fu.

Motivating Example: Female Labor Participation

This is an example from Professor Chao Fu.

Motivating Example: Female Labor Participation

This is an example from Professor Chao Fu.

- Consider a female labor participation problem
- Utility maximization of female i

$$
\begin{aligned}
\max & U_{i}\left(c_{i}, 1-l_{i}\right)+\epsilon_{i l} \\
\text { s.t. } & c_{i}=w_{i} l_{i}
\end{aligned}
$$

c_{i} : consumption; l_{i} : labor supply; $\epsilon_{i l}$: unobserved taste shock; w_{i} : wage

Motivating Example: Female Labor Participation

This is an example from Professor Chao Fu.

- Consider a female labor participation problem
- Utility maximization of female i :

$$
\begin{align*}
\max & U_{i}\left(c_{i}, 1-l_{i}\right)+\epsilon_{i l} \tag{1}\\
\text { s.t. } & c_{i}=w_{i} l_{i}
\end{align*}
$$

c_{i} : consumption; l_{i} : labor supply; $\epsilon_{i l}$: unobserved taste shock; w_{i} : wage

Motivating Example: Female Labor Participation

Motivating Example: Female Labor Participation

- Assume that l_{i} is binary (work, not work)
- $I_{i}=1$ if $U(I=1) \geq U(I=0)$:

$$
U_{i}\left(w_{i}, 0\right)+\epsilon_{i 1} \geq U_{i}(0,1)+\epsilon_{i 0}
$$

- Then given w_{i}, we have a threshold value of $\epsilon_{i 1}-\epsilon_{i 0}$ for i to choose to work

$$
\begin{align*}
l_{i} & =1 \quad \text { if } \quad \epsilon_{i 0}-\epsilon_{i 1}<\epsilon^{*} \tag{3}\\
\epsilon^{*} & =U_{i}\left(w_{i}, 0\right)-U_{i}(0,1)
\end{align*}
$$

Motivating Example: Female Labor Participation

- Assume that I_{i} is binary (work, not work)
- $I_{i}=1$ if $U(I=1) \geq U(I=0)$:

$$
\begin{equation*}
U_{i}\left(w_{i}, 0\right)+\epsilon_{i 1} \geq U_{i}(0,1)+\epsilon_{i 0} \tag{2}
\end{equation*}
$$

- Then given w_{i}, we have a threshold value of $\epsilon_{i 1}-\epsilon_{i 0}$ for i to choose to work:

$$
\epsilon^{*}=U_{i}\left(w_{i}, 0\right)-U_{i}(0,1)
$$

Motivating Example: Female Labor Participation

- Assume that I_{i} is binary (work, not work)
- $I_{i}=1$ if $U(I=1) \geq U(I=0)$:

$$
\begin{equation*}
U_{i}\left(w_{i}, 0\right)+\epsilon_{i 1} \geq U_{i}(0,1)+\epsilon_{i 0} \tag{2}
\end{equation*}
$$

- Then given w_{i}, we have a threshold value of $\epsilon_{i 1}-\epsilon_{i 0}$ for i to choose to work:

$$
\begin{align*}
I_{i} & =1 \quad \text { if } \quad \epsilon_{i 0}-\epsilon_{i 1}<\epsilon^{*} \tag{3}\\
\epsilon^{*} & =U_{i}\left(w_{i}, 0\right)-U_{i}(0,1)
\end{align*}
$$

Motivating Example: Female Labor Participation

Motivating Example: Female Labor Participation

- Assume that shock $\epsilon_{i 1}-\epsilon_{i 0}$ has a CDF $F_{\epsilon \mid w, c h i}$
- We have the following working probability for i :

$$
\begin{aligned}
G(w, c h i) & =\operatorname{Pr}(I=1 \mid w)=\int_{-\infty}^{\epsilon^{*}} d F_{\epsilon \mid w} \\
& =F_{\epsilon \mid w}\left(\epsilon^{*}(w)\right)
\end{aligned}
$$

- Two empirical research approaches for this question

Motivating Example: Female Labor Participation

- Assume that shock $\epsilon_{i 1}-\epsilon_{i 0}$ has a CDF $F_{\epsilon \mid w, c h i}$
- We have the following working probability for i :

$$
\begin{align*}
G(w, c h i) & =\operatorname{Pr}(I=1 \mid w)=\int_{-\infty}^{\epsilon^{*}} d F_{\epsilon \mid w} \\
& =F_{\epsilon \mid w}\left(\epsilon^{*}(w)\right) \tag{4}
\end{align*}
$$

- Two empirical research approaches for this question

Motivating Example: Female Labor Participation

- Assume that shock $\epsilon_{i 1}-\epsilon_{i 0}$ has a CDF $F_{\epsilon \mid w, c h i}$
- We have the following working probability for i :

$$
\begin{align*}
G(w, c h i) & =\operatorname{Pr}(I=1 \mid w)=\int_{-\infty}^{\epsilon^{*}} d F_{\epsilon \mid w} \\
& =F_{\epsilon \mid w}\left(\epsilon^{*}(w)\right) \tag{4}
\end{align*}
$$

- Two empirical research approaches for this question

Motivating Example: Female Labor Participation

1. We can directly estimate probability function G

Motivating Example: Female Labor Participation

1. We can directly estimate probability function G

Motivating Example: Female Labor Participation

1. We can directly estimate probability function G

- Assume that G is a linear function

$$
\begin{equation*}
G(w)=\beta_{0}+\beta_{1} w_{i} \tag{5}
\end{equation*}
$$

- Linear Probability Model \Rightarrow We can use OLS to estimate β
- This is called "Reduced-form" approach

■ We usually identify it by some research "design" (IV, RDD, DID)

- Thus, it is also called "Design-based" approach

Motivating Example: Female Labor Participation

1. We can directly estimate probability function G

- Assume that G is a linear function

$$
\begin{equation*}
G(w)=\beta_{0}+\beta_{1} w_{i} \tag{5}
\end{equation*}
$$

- Linear Probability Model \Rightarrow We can use OLS to estimate β
- This is called "Reduced-form" approach

■ We usually identify it by some research "design" (IV, RDD, DID)

- Thus, it is also called "Design-based" approach

Motivating Example: Female Labor Participation

1. We can directly estimate probability function G

- Assume that G is a linear function

$$
\begin{equation*}
G(w)=\beta_{0}+\beta_{1} w_{i} \tag{5}
\end{equation*}
$$

- Linear Probability Model \Rightarrow We can use OLS to estimate β
- This is called "Reduced-form" approach
- We usually identify it by some research "design" (IV, RDD, DID)
- Thus, it is also called "Design-based" approach

Motivating Example: Female Labor Participation

1. We can directly estimate probability function G

- Assume that G is a linear function

$$
\begin{equation*}
G(w)=\beta_{0}+\beta_{1} w_{i} \tag{5}
\end{equation*}
$$

- Linear Probability Model \Rightarrow We can use OLS to estimate β
- This is called "Reduced-form" approach
- We usually identify it by some research "design" (IV, RDD, DID)
- Thus, it is also called "Design-based" approach

Motivating Example: Female Labor Participation

1. We can directly estimate probability function G

- Assume that G is a linear function

$$
\begin{equation*}
G(w)=\beta_{0}+\beta_{1} w_{i} \tag{5}
\end{equation*}
$$

- Linear Probability Model \Rightarrow We can use OLS to estimate β
- This is called "Reduced-form" approach

■ We usually identify it by some research "design" (IV, RDD, DID)
■ Thus, it is also called "Design-based" approach

Motivating Example: Female Labor Participation

2. We can estimate ϵ 's CDF F, and utility function U

Motivating Example: Female Labor Participation

2. We can estimate ϵ 's CDF F, and utility function U

Motivating Example: Female Labor Participation

2. We can estimate ϵ 's CDF F, and utility function U

- We have the likelihood function as:

$$
\begin{equation*}
L\left(\Theta^{U}, \Theta^{F} ; \text { data }\right)=\prod_{i=1}^{N} F_{\epsilon}\left(\epsilon^{*}\right)^{l_{i}}\left[1-F_{\epsilon}\left(\epsilon^{*}\right)\right]^{1-l_{i}} \tag{6}
\end{equation*}
$$

Θ^{U} is the parameter set of utility function; Θ^{F} is the parameter set of shock's CDF

- We use MLE to estimate Θ^{U} and $\Theta^{F} \Rightarrow$ Recover choice structure directly
- This is called "Structural" /Model-based" approach

Motivating Example: Female Labor Participation

2. We can estimate ϵ 's CDF F, and utility function U

- We have the likelihood function as:

$$
\begin{equation*}
L\left(\Theta^{U}, \Theta^{F} ; \text { data }\right)=\prod_{i=1}^{N} F_{\epsilon}\left(\epsilon^{*}\right)^{l_{i}}\left[1-F_{\epsilon}\left(\epsilon^{*}\right)\right]^{1-l_{i}} \tag{6}
\end{equation*}
$$

Θ^{U} is the parameter set of utility function; Θ^{F} is the parameter set of shock's CDF

- We use MLE to estimate Θ^{U} and $\Theta^{F} \Rightarrow$ Recover choice structure directly
- This is called "Structural" /Model-based" approach

Motivating Example: Female Labor Participation

2. We can estimate ϵ 's CDF F, and utility function U

- We have the likelihood function as:

$$
\begin{equation*}
L\left(\Theta^{U}, \Theta^{F} ; \text { data }\right)=\prod_{i=1}^{N} F_{\epsilon}\left(\epsilon^{*}\right)^{l_{i}}\left[1-F_{\epsilon}\left(\epsilon^{*}\right)\right]^{1-l_{i}} \tag{6}
\end{equation*}
$$

Θ^{U} is the parameter set of utility function; Θ^{F} is the parameter set of shock's CDF

- We use MLE to estimate Θ^{U} and $\Theta^{F} \Rightarrow$ Recover choice structure directly
- This is called "Structural" /Model-based" approach

Motivating Example: Female Labor Participation

For example,

Motivating Example: Female Labor Participation

For example,

Motivating Example: Female Labor Participation

For example,
■ $U=\alpha w_{i}+\phi\left(1-l_{i}\right)$

- ϵ follows T1EV distribution
- We have the likelihood function as:

Motivating Example: Female Labor Participation

For example,

- $U=\alpha w_{i}+\phi\left(1-l_{i}\right)$

■ ϵ follows T1EV distribution

- We have the likelihood function as:

Motivating Example: Female Labor Participation

For example,

- $U=\alpha w_{i}+\phi\left(1-l_{i}\right)$
- ϵ follows T1EV distribution
- We have the likelihood function as:

$$
\begin{align*}
L\left(\Theta^{U}, \Theta^{F} ; \text { data }\right) & =\prod_{i=1}^{N} F_{\epsilon}\left(\epsilon^{*}\right)^{i}\left[1-F_{\epsilon}\left(\epsilon^{*}\right)\right]^{1-l_{i}} \\
& =\prod_{i=1}^{N}\left(\frac{\exp \left(\alpha w_{i}\right)}{\exp \left(\alpha w_{i}\right)+\exp (\phi)}\right)^{l_{i}} \times\left(\frac{\exp (\phi)}{\exp \left(\alpha w_{i}\right)+\exp (\phi)}\right)^{1-l_{i}} \tag{7}
\end{align*}
$$

Two Approaches: Internal vs External Validity

Two Approaches: Internal vs External Validity

- Before we compare the two approaches
- We need to first clarify what does it mean by "internal" and "external validity
- Internal means that it is valid within some current specific context or environment
- External means that it is also valid outside the current context or environment
- External refers to our attempt to extrapolate our analysis

Two Approaches: Internal vs External Validity

- Before we compare the two approaches

■ We need to first clarify what does it mean by "internal" and "external validity

- Internal means that it is valid within some current specific context or environment

■ External means that it is also valid outside the current context or environment

- External refers to our attemnt to extranolate our analysis

Two Approaches: Internal vs External Validity

- Before we compare the two approaches

■ We need to first clarify what does it mean by "internal" and "external validity

- Internal means that it is valid within some current specific context or environment
- External means that it is also valid outside the current context or environment
- External refers to our attempt to extrapolate our analysis

Two Approaches: Internal vs External Validity

- Before we compare the two approaches

■ We need to first clarify what does it mean by "internal" and "external validity

- Internal means that it is valid within some current specific context or environment

■ External means that it is also valid outside the current context or environment

- External refers to our attempt to extrapolate our analysis

Two Approaches: Internal vs External Validity

- Before we compare the two approaches

■ We need to first clarify what does it mean by "internal" and "external validity

- Internal means that it is valid within some current specific context or environment

■ External means that it is also valid outside the current context or environment
■ External refers to our attempt to extrapolate our analysis

Two Approaches: Internal vs External Validity

Two Approaches: Internal vs External Validity

- Take One Child Policy (OCP) as an example

■ There are three layers of policy evaluation (Heckman and Vytlacil, 2007)

- The first one is "internal"
= The second and the third one are "external'

Two Approaches: Internal vs External Validity

- Take One Child Policy (OCP) as an example

■ There are three layers of policy evaluation (Heckman and Vytlacil, 2007)

What was the impact of the OCP on fertility rate?

- Forecasting the impact of an intervention previously happened in environment A to
happen in another environment B
What would be the impact if we restart the OCP in 2023 ?
- Forecasting the impact of an intervention never happened in history in any
environment
What would be the impact if we force all women to give birth to at least one child?
- The first one is "internal'
- The second and the third one are "external'

Two Approaches: Internal vs External Validity

- Take One Child Policy (OCP) as an example

■ There are three layers of policy evaluation (Heckman and Vytlacil, 2007)

- Evaluating the impact of a historical intervention What was the impact of the OCP on fertility rate?
- Forecasting the impact of an intervention previously happened in environment A to
happen in another environment B
What would be the impact if we restart the OCP in 2023?
- Forecasting the impact of an intervention never happened in history in any
environment
What would be the impact if we force all women to give birth to at least one child?
- The first one is "internal"
- The second and the third one are "external'

Two Approaches: Internal vs External Validity

- Take One Child Policy (OCP) as an example

■ There are three layers of policy evaluation (Heckman and Vytlacil, 2007)

- Evaluating the impact of a historical intervention

What was the impact of the OCP on fertility rate?

- Forecasting the impact of an intervention previously happened in environment A to happen in another environment B
What would be the impact if we restart the OCP in 2023?
- Forecasting the impact of an intervention never happened in history in any
environment
What would be the impact if we force all women to give birth to at least one child?
- The first one is "internal"
- The second and the third one are "external'

Two Approaches: Internal vs External Validity

- Take One Child Policy (OCP) as an example
- There are three layers of policy evaluation (Heckman and Vytlacil, 2007)
- Evaluating the impact of a historical intervention What was the impact of the OCP on fertility rate?
- Forecasting the impact of an intervention previously happened in environment A to happen in another environment B
What would be the impact if we restart the OCP in 2023?
■ Forecasting the impact of an intervention never happened in history in any environment
What would be the impact if we force all women to give birth to at least one child?
- The first one is "internal"
- The second and the third one are "external'

Two Approaches: Internal vs External Validity

- Take One Child Policy (OCP) as an example
- There are three layers of policy evaluation (Heckman and Vytlacil, 2007)
- Evaluating the impact of a historical intervention What was the impact of the OCP on fertility rate?
- Forecasting the impact of an intervention previously happened in environment A to happen in another environment B
What would be the impact if we restart the OCP in 2023?
■ Forecasting the impact of an intervention never happened in history in any environment
What would be the impact if we force all women to give birth to at least one child?
■ The first one is "internal"
- The second and the third one are "external'

Two Approaches: Internal vs External Validity

- Take One Child Policy (OCP) as an example
- There are three layers of policy evaluation (Heckman and Vytlacil, 2007)
- Evaluating the impact of a historical intervention What was the impact of the OCP on fertility rate?
- Forecasting the impact of an intervention previously happened in environment A to happen in another environment B
What would be the impact if we restart the OCP in 2023?
■ Forecasting the impact of an intervention never happened in history in any environment
What would be the impact if we force all women to give birth to at least one child?
- The first one is "internal"

■ The second and the third one are "external"

Two Approaches: Structural/Model-based Approach

Two Approaches: Structural/Model-based Approach

- Target: Primitive parameters \Rightarrow Choice structure Agent's utility function, firm's production function, market structure...
- Advantages
- Disadvantages

Two Approaches: Structural/Model-based Approach

- Target: Primitive parameters \Rightarrow Choice structure

Agent's utility function, firm's production function, market structure...

- Advantages
- Deeper economic thinking: we can understand the original decision-making process

■ Great external validity \Rightarrow Solid under Lucas' critique

- More reliable counterfactual analysis
- Disadvantages

Two Approaches: Structural/Model-based Approach

- Target: Primitive parameters \Rightarrow Choice structure

Agent's utility function, firm's production function, market structure...

- Advantages

■ Deeper economic thinking: we can understand the original decision-making process

- Great external validity \Rightarrow Solid under Lucas' critique
- More reliable counterfactual analysis
- Disadvantages

Two Approaches: Structural/Model-based Approach

- Target: Primitive parameters \Rightarrow Choice structure

Agent's utility function, firm's production function, market structure...

- Advantages
- Deeper economic thinking: we can understand the original decision-making process

■ Great external validity \Rightarrow Solid under Lucas' critique

- More reliable counterfactual analysis
- Disadvantages

Two Approaches: Structural/Model-based Approach

- Target: Primitive parameters \Rightarrow Choice structure

Agent's utility function, firm's production function, market structure...

- Advantages
- Deeper economic thinking: we can understand the original decision-making process

■ Great external validity \Rightarrow Solid under Lucas' critique

- More reliable counterfactual analysis
- Disadvantages

Two Approaches: Structural/Model-based Approach

- Target: Primitive parameters \Rightarrow Choice structure

Agent's utility function, firm's production function, market structure...

- Advantages
- Deeper economic thinking: we can understand the original decision-making process
- Great external validity \Rightarrow Solid under Lucas' critique
- More reliable counterfactual analysis
- Disadvantages
- Need more (untestable) assumptions on functional form, distribution of unobservable
- Low internal validity

Two Approaches: Structural/Model-based Approach

- Target: Primitive parameters \Rightarrow Choice structure

Agent's utility function, firm's production function, market structure...

- Advantages
- Deeper economic thinking: we can understand the original decision-making process
- Great external validity \Rightarrow Solid under Lucas' critique
- More reliable counterfactual analysis
- Disadvantages
- Need more (untestable) assumptions on functional form, distribution of unobservable...
- Low internal validity

Two Approaches: Structural/Model-based Approach

- Target: Primitive parameters \Rightarrow Choice structure

Agent's utility function, firm's production function, market structure...

- Advantages
- Deeper economic thinking: we can understand the original decision-making process
- Great external validity \Rightarrow Solid under Lucas' critique
- More reliable counterfactual analysis
- Disadvantages
- Need more (untestable) assumptions on functional form, distribution of unobservable...
- Low internal validity

Two Approaches: Reduced-form/Design-based Approach

Two Approaches: Reduced-form/Design-based Approach

- Target: Some marginal effect of conditional expectation function What is the impact of A on B ?
- Do not care about the mechanism \Rightarrow A black box of causal effect

■ Advantages

- Disadvantages

Two Approaches: Reduced-form/Design-based Approach

- Target: Some marginal effect of conditional expectation function What is the impact of A on B ?
■ Do not care about the mechanism \Rightarrow A black box of causal effect
- Advantages
- Disadvantages

Two Approaches: Reduced-form/Design-based Approach

- Target: Some marginal effect of conditional expectation function What is the impact of A on B ?
■ Do not care about the mechanism \Rightarrow A black box of causal effect
- Advantages
- Very reliable if you have a good exogenous shock
- Great internal validity, not so many assumptions
- Disadvantages

Two Approaches: Reduced-form/Design-based Approach

- Target: Some marginal effect of conditional expectation function What is the impact of A on B ?
■ Do not care about the mechanism \Rightarrow A black box of causal effect
- Advantages
- Very reliable if you have a good exogenous shock
- Great internal validity, not so many assumptions
- Disadvantages

Two Approaches: Reduced-form/Design-based Approach

- Target: Some marginal effect of conditional expectation function What is the impact of A on B ?
■ Do not care about the mechanism \Rightarrow A black box of causal effect
- Advantages
- Very reliable if you have a good exogenous shock
- Great internal validity, not so many assumptions
- Disadvantages

Two Approaches: Reduced-form/Design-based Approach

- Target: Some marginal effect of conditional expectation function What is the impact of A on B ?
■ Do not care about the mechanism \Rightarrow A black box of causal effect
- Advantages
- Very reliable if you have a good exogenous shock
- Great internal validity, not so many assumptions
- Disadvantages
- No mechanism is revealed \Rightarrow More of a statistician than an economist
- Usually effects are very local \Rightarrow Low external validity

The causal effect is estimated for group A. Can it be applied to group B?

- Hard to have economic counterfactual interpretation Lucas' critique, General Equilibrium effect

Two Approaches: Reduced-form/Design-based Approach

- Target: Some marginal effect of conditional expectation function What is the impact of A on B ?
■ Do not care about the mechanism \Rightarrow A black box of causal effect
- Advantages
- Very reliable if you have a good exogenous shock
- Great internal validity, not so many assumptions
- Disadvantages
- No mechanism is revealed \Rightarrow More of a statistician than an economist
- Usually effects are very local \Rightarrow Low external validity

The causal effect is estimated for group A. Can it be applied to group B?

- Hard to have economic counterfactual interpretation Lucas' critique, General Equilibrium effect

Two Approaches: Reduced-form/Design-based Approach

- Target: Some marginal effect of conditional expectation function What is the impact of A on B ?
■ Do not care about the mechanism \Rightarrow A black box of causal effect
- Advantages
- Very reliable if you have a good exogenous shock
- Great internal validity, not so many assumptions
- Disadvantages
- No mechanism is revealed \Rightarrow More of a statistician than an economist
- Usually effects are very local \Rightarrow Low external validity The causal effect is estimated for group A. Can it be applied to group B?
- Hard to have economic counterfactual interpretation Lucas' critique, General Equilibrium effect

Two Approaches: Reduced-form/Design-based Approach

- Target: Some marginal effect of conditional expectation function What is the impact of A on B ?
■ Do not care about the mechanism \Rightarrow A black box of causal effect
- Advantages
- Very reliable if you have a good exogenous shock
- Great internal validity, not so many assumptions
- Disadvantages
- No mechanism is revealed \Rightarrow More of a statistician than an economist
- Usually effects are very local \Rightarrow Low external validity The causal effect is estimated for group A. Can it be applied to group B?
- Hard to have economic counterfactual interpretation Lucas' critique, General Equilibrium effect...

Two Approaches: Reduced-form/Design-based Approach

- This course will mainly focus on the Reduced-form/Design-based Approach
- Snecifically I will carefully go through traditional regression tools used in Anplied Econ
- And introduce tools beyond simple regression
- I will also introduce a little Structural/Model-based Approach (DCM)
- In general, let's try not to be Reg Monkeys!

Two Approaches: Reduced-form/Design-based Approach

- This course will mainly focus on the Reduced-form/Design-based Approach

■ Specifically, I will carefully go through traditional regression tools used in Applied Econ

- And introduce tools beyond simple regression

■ I will also introduce a little Structural/Model-based Approach (DCM)
■ In general, let's try not to be Reg Monkeys!

Potential Outcome Framework and RCT

Potential Outcome Framework and RCT

■ Example: Health status and hospitalization

Group	Sample Size	Mean Health Status
Hospital	7,774	3.21
No hospital	90,049	3.93

- Going to hospital makes you more sick?
- No! People go to hospital because they are sick
- Correlation is NOT causality!!!

Potential Outcome Framework and RCT

■ Example: Health status and hospitalization

Group	Sample Size	Mean Health Status
Hospital	7,774	3.21
No hospital	90,049	3.93

- Going to hospital makes you more sick?
- No! People go to hospital because they are sick

■ Correlation is NOT causality!!!

Potential Outcome Framework and RCT

■ Example: Health status and hospitalization

Group	Sample Size	Mean Health Status
Hospital	7,774	3.21
No hospital	90,049	3.93

- Going to hospital makes you more sick?

■ No! People go to hospital because they are sick.

- Correlation is NOT causality!!!

Potential Outcome Framework and RCT

■ Example: Health status and hospitalization

Group	Sample Size	Mean Health Status
Hospital	7,774	3.21
No hospital	90,049	3.93

- Going to hospital makes you more sick?

■ No! People go to hospital because they are sick.
■ Correlation is NOT causality!!!

Potential Outcome Framework and RCT

Potential Outcome Framework/Rubin Causal Model

Potential Outcome Framework and RCT

Potential Outcome Framework/Rubin Causal Model

Potential Outcome Framework and RCT

Potential Outcome Framework/Rubin Causal Model

- Binary treatment D_{i} for individual i, some outcome Y_{i}
- $Y_{0 i}$: The "potential outcome" of i if he/she is not treated, regardless of the treatment status in reality
= $Y_{1 i}$: The "potential outcome" of i if he/she is treated, regardless of the treatment status in reality
- Thus, we have:

$$
\begin{align*}
Y_{i} & =\left\{\begin{array}{lll}
Y_{1 i} & \text { if } & D_{i}=1 \\
Y_{0 i} & \text { if } & D_{i}=0
\end{array}\right. \tag{8}\\
& =Y_{0 i}+\left(Y_{1 i}-Y_{0 i}\right) D_{i}
\end{align*}
$$

Potential Outcome Framework and RCT

Potential Outcome Framework/Rubin Causal Model

- Binary treatment D_{i} for individual i, some outcome Y_{i}
- $Y_{0 i}$: The "potential outcome" of i if he/she is not treated, regardless of the treatment status in reality
- $Y_{1 i}:$ The "potential outcome" of i if he/she is treated, regardless of the treatment status in reality
- Thus we have:

$$
\begin{align*}
Y_{i} & =\left\{\begin{array}{lll}
Y_{1 i} & \text { if } & D_{i}=1 \\
Y_{0 i} & \text { if } & D_{i}=0
\end{array}\right. \tag{8}\\
& =Y_{0 i}+\left(Y_{1 i}-Y_{0 i}\right) D_{i}
\end{align*}
$$

Potential Outcome Framework and RCT

Potential Outcome Framework/Rubin Causal Model

- Binary treatment D_{i} for individual i, some outcome Y_{i}
- $Y_{0 i}$: The "potential outcome" of i if he/she is not treated, regardless of the treatment status in reality
- $Y_{1 i}$: The "potential outcome" of i if he/she is treated, regardless of the treatment status in reality
- Thus, we have:

$$
\begin{align*}
Y_{i} & =\left\{\begin{array}{lll}
Y_{1 i} & \text { if } \quad D_{i}=1 \\
Y_{0 i} & \text { if } & D_{i}=0
\end{array}\right. \tag{8}\\
& =Y_{0 i}+\left(Y_{1 i}-Y_{0 i}\right) D_{i}
\end{align*}
$$

Potential Outcome Framework and RCT

Potential Outcome Framework/Rubin Causal Model

- Binary treatment D_{i} for individual i, some outcome Y_{i}
- $Y_{0 i}$: The "potential outcome" of i if he/she is not treated, regardless of the treatment status in reality
- $Y_{1 i}$: The "potential outcome" of i if he/she is treated, regardless of the treatment status in reality
- Thus, we have:

$$
\begin{align*}
Y_{i} & =\left\{\begin{array}{lll}
Y_{1 i} & \text { if } & D_{i}=1 \\
Y_{0 i} & \text { if } & D_{i}=0
\end{array}\right. \tag{8}\\
& =Y_{0 i}+\left(Y_{1 i}-Y_{0 i}\right) D_{i}
\end{align*}
$$

Potential Outcome Framework and RCT

Potential Outcome Framework and RCT

- Individual treatment effect: $Y_{1 i}-Y_{0 i}$
n Not available: There is only one world! Given i, you see either $Y_{0 ;}$ or Y_{1},
■ But we can consider averages: By differencing mean outcomes from the two groups

$$
\begin{aligned}
& \quad E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right] \\
& =\underbrace{E\left[Y_{1 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=1\right]}_{\text {Average Treatment on the Treated (ATT) }}+\underbrace{E\left[Y_{0 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=0\right]}_{\text {Selection bias }} \\
& \text { - ATT: Causal effect on the treated group } \\
& \text { Selection bias: Original difference between treated and untreated group }
\end{aligned}
$$

- Give me an example

Potential Outcome Framework and RCT

■ Individual treatment effect: $Y_{1 i}-Y_{0 i}$
■ Not available: There is only one world! Given i, you see either $Y_{0 i}$ or $Y_{1 i}$

- But we can consider averages: By differencing mean outcomes from the two groups

$$
\begin{aligned}
& E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right] \\
= & \underbrace{E\left[Y_{1 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=1\right]}_{\text {Average Treatment on the Treated (ATT) }}+\underbrace{E\left[Y_{0 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=0\right]}_{\text {Selection bias }}
\end{aligned}
$$

- ATT: Causal effect on the treated group

■ Selection bias: Original difference between treated and untreated group

- Give me an example

Potential Outcome Framework and RCT

- Individual treatment effect: $Y_{1 i}-Y_{0 i}$

■ Not available: There is only one world! Given i, you see either $Y_{0 i}$ or $Y_{1 i}$
■ But we can consider averages: By differencing mean outcomes from the two groups

$$
\begin{align*}
& E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right] \tag{9}\\
= & \underbrace{E\left[Y_{1 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=1\right]}_{\text {Average Treatment on the Treated (ATT) }}+\underbrace{E\left[Y_{0 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=0\right]}_{\text {Selection bias }}
\end{align*}
$$

- ATT: Causal effect on the treated group
- Selection bias: Original difference between treated and untreated group
- Give me an example

Potential Outcome Framework and RCT

- Individual treatment effect: $Y_{1 i}-Y_{0 i}$

■ Not available: There is only one world! Given i, you see either $Y_{0 i}$ or $Y_{1 i}$
■ But we can consider averages: By differencing mean outcomes from the two groups

$$
\begin{align*}
& E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right] \tag{9}\\
= & \underbrace{E\left[Y_{1 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=1\right]}_{\text {Average Treatment on the Treated (ATT) }}+\underbrace{E\left[Y_{0 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=0\right]}_{\text {Selection bias }}
\end{align*}
$$

■ ATT: Causal effect on the treated group

- Selection bias: Original difference between treated and untreated group
- Give me an example

Potential Outcome Framework and RCT

- Individual treatment effect: $Y_{1 i}-Y_{0 i}$

■ Not available: There is only one world! Given i, you see either $Y_{0 i}$ or $Y_{1 i}$
■ But we can consider averages: By differencing mean outcomes from the two groups

$$
\begin{align*}
& E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right] \tag{9}\\
= & \underbrace{E\left[Y_{1 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=1\right]}_{\text {Average Treatment on the Treated (ATT) }}+\underbrace{E\left[Y_{0 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=0\right]}_{\text {Selection bias }}
\end{align*}
$$

- ATT: Causal effect on the treated group

■ Selection bias: Original difference between treated and untreated group

- Give me an example

Potential Outcome Framework and RCT

- Individual treatment effect: $Y_{1 i}-Y_{0 i}$

■ Not available: There is only one world! Given i, you see either $Y_{0 i}$ or $Y_{1 i}$
■ But we can consider averages: By differencing mean outcomes from the two groups

$$
\begin{align*}
& E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right] \tag{9}\\
= & \underbrace{E\left[Y_{1 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=1\right]}_{\text {Average Treatment on the Treated (ATT) }}+\underbrace{E\left[Y_{0 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=0\right]}_{\text {Selection bias }}
\end{align*}
$$

- ATT: Causal effect on the treated group
- Selection bias: Original difference between treated and untreated group
- Give me an example

Potential Outcome Framework and RCT

Randomization can solve the selection problem.

Potential Outcome Framework and RCT

Randomization can solve the selection problem.

Potential Outcome Framework and RCT

Randomization can solve the selection problem.
■ Assume that we randomly assign the treatment to the population:

$$
\begin{equation*}
D_{i} \Perp Y_{0 i}, Y_{1 i} \tag{10}
\end{equation*}
$$

- Then we have selection bias to be zero:

$$
E\left[Y_{0 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=0\right]=0
$$

- Thus, simple difference between the mean of treated and untreated group is ATT (and overall ATE)

$$
E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right]=E\left[Y_{1 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=1\right]=A T T=A T E
$$

Potential Outcome Framework and RCT

Randomization can solve the selection problem.
■ Assume that we randomly assign the treatment to the population:

$$
\begin{equation*}
D_{i} \Perp Y_{0 i}, Y_{1 i} \tag{10}
\end{equation*}
$$

- Then we have selection bias to be zero:

$$
E\left[Y_{0 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=0\right]=0
$$

- Thus, simple difference between the mean of treated and untreated group is ATT (and overall ATE)

$$
E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right]=E\left[Y_{1 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=1\right]=A T T=A T E
$$

Potential Outcome Framework and RCT

Randomization can solve the selection problem.
■ Assume that we randomly assign the treatment to the population:

$$
\begin{equation*}
D_{i} \Perp Y_{0 i}, Y_{1 i} \tag{10}
\end{equation*}
$$

- Then we have selection bias to be zero:

$$
E\left[Y_{0 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=0\right]=0
$$

- Thus, simple difference between the mean of treated and untreated group is ATT (and overall ATE)

$$
E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right]=E\left[Y_{1 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=1\right]=A T T=A T E
$$

Regression, CEF and Causal Inference

Regression, CEF and Causal Inference

- Regression is the most useful tool in applied econometrics
- When can we interpret regression coefficient as causal effect?
- What are the relations among regression, conditional expectation function (CEF) and treatment effect?

Regression, CEF and Causal Inference

- Regression is the most useful tool in applied econometrics

■ When can we interpret regression coefficient as causal effect?

- What are the relations among regression, conditional expectation function (CEF) and treatment effect?

Regression, CEF and Causal Inference

- Regression is the most useful tool in applied econometrics

■ When can we interpret regression coefficient as causal effect?
■ What are the relations among regression, conditional expectation function (CEF) and treatment effect?

Regression, CEF and Causal Inference

Regression, CEF and Causal Inference

Conditional Expectation Function (CEF)

Regression, CEF and Causal Inference

Conditional Expectation Function (CEF)

- CEF is the conditional expectation of an outcome Y_{i}, given some predictor vector X_{i}

$$
\begin{equation*}
E\left[Y_{i} \mid X_{i}=x\right]=\int t f_{y}\left(t \mid X_{i}=x\right) d t \tag{11}
\end{equation*}
$$

where f_{y} is pdf

- This is a population concept $(n \rightarrow \infty)$
- It describes a prediction of X on Y, but NOT necessarily causal
- We can always decompose Y_{i} as predicted part (CEF) + error part

$$
Y_{i}=E\left[Y_{i} \mid X_{i}\right]+\epsilon_{i}
$$

Regression, CEF and Causal Inference

Conditional Expectation Function (CEF)

- CEF is the conditional expectation of an outcome Y_{i}, given some predictor vector X_{i}

$$
\begin{equation*}
E\left[Y_{i} \mid X_{i}=x\right]=\int t f_{y}\left(t \mid X_{i}=x\right) d t \tag{11}
\end{equation*}
$$

where f_{y} is pdf

- This is a population concept $(n \rightarrow \infty)$
- It describes a prediction of X on Y, but NOT necessarily causal
- We can always decompose Y_{i} as predicted part (CEF) + error part

$$
Y_{i}=E\left[Y_{i} \mid X_{i}\right]+\epsilon_{i}
$$

Regression, CEF and Causal Inference

Conditional Expectation Function (CEF)

■ CEF is the conditional expectation of an outcome Y_{i}, given some predictor vector X_{i}

$$
\begin{equation*}
E\left[Y_{i} \mid X_{i}=x\right]=\int t f_{y}\left(t \mid X_{i}=x\right) d t \tag{11}
\end{equation*}
$$

where f_{y} is pdf

- This is a population concept $(n \rightarrow \infty)$

■ It describes a prediction of X on Y, but NOT necessarily causal

- We can always decompose Y_{i} as predicted part (CEF) + error part

$$
Y_{i}=E\left[Y_{i} \mid X_{i}\right]+\epsilon_{i}
$$

Regression, CEF and Causal Inference

Conditional Expectation Function (CEF)

- CEF is the conditional expectation of an outcome Y_{i}, given some predictor vector X_{i}

$$
\begin{equation*}
E\left[Y_{i} \mid X_{i}=x\right]=\int t f_{y}\left(t \mid X_{i}=x\right) d t \tag{11}
\end{equation*}
$$

where f_{y} is pdf

- This is a population concept $(n \rightarrow \infty)$

■ It describes a prediction of X on Y, but NOT necessarily causal

- We can always decompose Y_{i} as predicted part (CEF) + error part

$$
\begin{equation*}
Y_{i}=E\left[Y_{i} \mid X_{i}\right]+\epsilon_{i} \tag{12}
\end{equation*}
$$

where $E\left[\epsilon_{i} \mid X_{i}\right]=0$ (conditional mean zero)

Regression, CEF and Causal Inference

Regression, CEF and Causal Inference

- CEF is the best predictor of Y_{i} given X_{i}
- It minimizes the mean squared prediction errors

Regression, CEF and Causal Inference

- CEF is the best predictor of Y_{i} given X_{i}
- It minimizes the mean squared prediction errors

Theorem 3.1.2 in MHE

Let $m\left(X_{i}\right)$ be any function of X_{i}. The CEF solves

$$
E\left[Y_{i} \mid X_{i}\right]=\operatorname{argmin}_{m\left(X_{i}\right)} E\left[\left(Y_{i}-m\left(X_{i}\right)\right)^{2}\right]
$$

so it is the MMSE predictor of Y_{i} given X_{i}

Regression, CEF and Causal Inference

■ CEF is the best predictor of Y_{i} given X_{i}

- It minimizes the mean squared prediction errors

Theorem 3.1.2 in MHE

Let $m\left(X_{i}\right)$ be any function of X_{i}. The CEF solves

$$
E\left[Y_{i} \mid X_{i}\right]=\operatorname{argmin}_{m\left(X_{i}\right)} E\left[\left(Y_{i}-m\left(X_{i}\right)\right)^{2}\right]
$$

so it is the MMSE predictor of Y_{i} given X_{i}.

Regression, CEF and Causal Inference

Regression, CEF and Causal Inference

Linear Regression

Regression, CEF and Causal Inference

Linear Regression

■ Regression is a linear prediction that minimizes the mean squared error

$$
\begin{aligned}
Y_{i} & =X_{i}^{\prime} \beta+\epsilon_{i} \\
\beta & =\operatorname{argmin}_{b} E\left[\left(Y_{i}-X_{i}^{\prime} b\right)^{2}\right]
\end{aligned}
$$

- We have the first order condition (moment condition) as

$$
E\left[X_{i}\left(Y_{i}-X_{i}^{\prime} \beta\right)\right]=0
$$

- The solution can be written as:

Regression, CEF and Causal Inference

Linear Regression

■ Regression is a linear prediction that minimizes the mean squared error

$$
\begin{aligned}
Y_{i} & =X_{i}^{\prime} \beta+\epsilon_{i} \\
\beta & =\operatorname{argmin}_{b} E\left[\left(Y_{i}-X_{i}^{\prime} b\right)^{2}\right]
\end{aligned}
$$

- We have the first order condition (moment condition) as:

$$
E\left[X_{i}\left(Y_{i}-X_{i}^{\prime} \beta\right)\right]=0
$$

- The solution can be written as:

$$
\beta=E\left[X_{i} X_{i}^{\prime}\right]^{-1} E\left[X_{i} Y_{i}\right]
$$

Regression, CEF and Causal Inference

Linear Regression

■ Regression is a linear prediction that minimizes the mean squared error

$$
\begin{aligned}
Y_{i} & =X_{i}^{\prime} \beta+\epsilon_{i} \\
\beta & =\operatorname{argmin}_{b} E\left[\left(Y_{i}-X_{i}^{\prime} b\right)^{2}\right]
\end{aligned}
$$

- We have the first order condition (moment condition) as:

$$
E\left[X_{i}\left(Y_{i}-X_{i}^{\prime} \beta\right)\right]=0
$$

- The solution can be written as:

$$
\beta=E\left[X_{i} X_{i}^{\prime}\right]^{-1} E\left[X_{i} Y_{i}\right]
$$

Regression, CEF and Causal Inference

Tips: Difference between β and $\hat{\beta}$ OLS

Regression, CEF and Causal Inference

Tips: Difference between β and $\hat{\beta}_{O L S}$

Regression, CEF and Causal Inference

Tips: Difference between β and $\hat{\beta}_{O L S}$

- Definition

$$
\begin{aligned}
\beta & =E\left[X_{i} X_{i}^{\prime}\right]^{-1} E\left[X_{i} Y_{i}\right] \\
\hat{\beta}_{O L S} & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y
\end{aligned}
$$

- $\hat{\beta}_{\text {OLS }}$ is an estimator of β (there can be alternative estimators, e.g. MLE)
- Population vs Sample, Identification vs Estimation
- X_{i} is an $1 \times k$ vector, Y_{i} is a scalar. They are random variables
- X is an $n \times k$ matrix, Y is an $n \times 1$ vector. They are realizations of random variables (real data)

Regression, CEF and Causal Inference

Tips: Difference between β and $\hat{\beta}_{O L S}$

- Definition

$$
\begin{aligned}
\beta & =E\left[X_{i} X_{i}^{\prime}\right]^{-1} E\left[X_{i} Y_{i}\right] \\
\hat{\beta}_{O L S} & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y
\end{aligned}
$$

- $\hat{\beta}_{O L S}$ is an estimator of β (there can be alternative estimators, e.g. MLE)
- Population vs Sample, Identification vs Estimation

■ X_{i} is an $1 \times k$ vector, Y_{i} is a scalar. They are random variables

- X is an $n \times k$ matrix, Y is an $n \times 1$ vector. They are realizations of random variables (real data)

Regression, CEF and Causal Inference

Tips: Difference between β and $\hat{\beta}_{O L S}$

- Definition

$$
\begin{aligned}
\beta & =E\left[X_{i} X_{i}^{\prime}\right]^{-1} E\left[X_{i} Y_{i}\right] \\
\hat{\beta}_{O L S} & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y
\end{aligned}
$$

- $\hat{\beta}_{\text {OLS }}$ is an estimator of β (there can be alternative estimators, e.g. MLE)
- Population vs Sample, Identification vs Estimation
- X_{i} is an $1 \times k$ vector, Y_{i} is a scalar. They are random variables
- X is an $n \times k$ matrix, Y is an $n \times 1$ vector. They are realizations of random variables (real data)

Regression, CEF and Causal Inference

Tips: Difference between β and $\hat{\beta}_{O L S}$

- Definition

$$
\begin{aligned}
\beta & =E\left[X_{i} X_{i}^{\prime}\right]^{-1} E\left[X_{i} Y_{i}\right] \\
\hat{\beta}_{O L S} & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y
\end{aligned}
$$

- $\hat{\beta}_{\text {OLS }}$ is an estimator of β (there can be alternative estimators, e.g. MLE)

■ Population vs Sample, Identification vs Estimation
■ X_{i} is an $1 \times k$ vector, Y_{i} is a scalar. They are random variables

- X is an $n \times k$ matrix, Y is an $n \times 1$ vector. They are realizations of random variables (real data)

Regression, CEF and Causal Inference

Tips: Difference between β and $\hat{\beta}_{O L S}$

- Definition

$$
\begin{aligned}
\beta & =E\left[X_{i} X_{i}^{\prime}\right]^{-1} E\left[X_{i} Y_{i}\right] \\
\hat{\beta}_{O L S} & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y
\end{aligned}
$$

- $\hat{\beta}_{\text {OLS }}$ is an estimator of β (there can be alternative estimators, e.g. MLE)
- Population vs Sample, Identification vs Estimation

■ X_{i} is an $1 \times k$ vector, Y_{i} is a scalar. They are random variables
■ X is an $n \times k$ matrix, Y is an $n \times 1$ vector. They are realizations of random variables (real data)

Regression, CEF and Causal Inference

CEF and linear regression

Regression, CEF and Causal Inference

CEF and linear regression

Regression, CEF and Causal Inference

CEF and linear regression

- $E\left[\epsilon_{i} \mid X_{i}\right]=0$ vs $E\left[X_{i} \epsilon_{i}\right]=0$
- Minimizing MMSE: Best predictor (CEF) vs Best linear predictor (linear regression)
■ CEF is stronger than linear regression
- If CEF is linear, then linear regression is identical to CEF
- Even if CEF is not linear, regression is the best linear approximation to CEF (Minimize MSE)

Regression, CEF and Causal Inference

CEF and linear regression

- $E\left[\epsilon_{i} \mid X_{i}\right]=0$ vs $E\left[X_{i} \epsilon_{i}\right]=0$
- Minimizing MMSE: Best predictor (CEF) vs Best linear predictor (linear regression)
- CEF is stronger than linear regression
- If CEF is linear, then linear regression is identical to CEF
- Even if CEF is not linear, regression is the best linear approximation to CEF (Minimize MSE)

Regression, CEF and Causal Inference

CEF and linear regression

- $E\left[\epsilon_{i} \mid X_{i}\right]=0$ vs $E\left[X_{i} \epsilon_{i}\right]=0$
- Minimizing MMSE: Best predictor (CEF) vs Best linear predictor (linear regression)
- CEF is stronger than linear regression
- If CEF is linear, then linear regression is identical to CEF
- Even if CEF is not linear, regression is the best linear approximation to CEF (Minimize MSE)

Regression, CEF and Causal Inference

CEF and linear regression
■ $E\left[\epsilon_{i} \mid X_{i}\right]=0$ vs $E\left[X_{i} \epsilon_{i}\right]=0$

- Minimizing MMSE: Best predictor (CEF) vs Best linear predictor (linear regression)
- CEF is stronger than linear regression
- If CEF is linear, then linear regression is identical to CEF
- Even if CEF is not linear, regression is the best linear approximation to CEF (Minimize MSE)

Regression, CEF and Causal Inference

CEF and linear regression

- $E\left[\epsilon_{i} \mid X_{i}\right]=0$ vs $E\left[X_{i} \epsilon_{i}\right]=0$
- Minimizing MMSE: Best predictor (CEF) vs Best linear predictor (linear regression)
- CEF is stronger than linear regression
- If CEF is linear, then linear regression is identical to CEF

■ Even if CEF is not linear, regression is the best linear approximation to CEF (Minimize MSE)

Regression, CEF and Causal Inference

When does a regression coefficient have a causal meaning?

Regression, CEF and Causal Inference

When does a regression coefficient have a causal meaning?

Regression, CEF and Causal Inference

```
Regression and Causality
Case 1: We assume randomization (no need for controls) and constant TE
```


Regression, CEF and Causal Inference

Regression and Causality
Case 1: We assume randomization (no need for controls) and constant TE

Regression, CEF and Causal Inference

Regression and Causality
Case 1: We assume randomization (no need for controls) and constant TE
■ When we have a random experiment with $D_{i} \Perp Y_{0 i}, Y_{1 i}$ and regression

$$
Y_{i}=\alpha+\rho D_{i}+\epsilon_{i}
$$

- If CEF is linear, then:

$$
\rho=E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right]=E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1\right]
$$

- Regression coefficient ρ is the ATT/TE

Regression, CEF and Causal Inference

Regression and Causality
Case 1: We assume randomization (no need for controls) and constant TE
■ When we have a random experiment with $D_{i} \Perp Y_{0 i}, Y_{1 i}$ and regression

$$
Y_{i}=\alpha+\rho D_{i}+\epsilon_{i}
$$

- If CEF is linear, then:

$$
\rho=E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right]=E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1\right]
$$

- Regression coefficient ρ is the ATT/TE

Regression, CEF and Causal Inference

Regression and Causality
Case 1: We assume randomization (no need for controls) and constant TE
■ When we have a random experiment with $D_{i} \Perp Y_{0 i}, Y_{1 i}$ and regression

$$
Y_{i}=\alpha+\rho D_{i}+\epsilon_{i}
$$

- If CEF is linear, then:

$$
\rho=E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right]=E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1\right]
$$

- Regression coefficient ρ is the ATT/TE

Regression, CEF and Causal Inference

Regression and Causality
 Case 2: We assume randomization after controls

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls
■ Key to go from correlation/prediction to causality: Conditional Independent Assumption (CIA)/Selection on Observables

$$
D_{i} \Perp Y_{0 i}, Y_{1 i} \mid X_{i}
$$

- Treatment is random, after controlling for covariates X_{i}

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls
■ Key to go from correlation/prediction to causality: Conditional Independent Assumption (CIA)/Selection on Observables

$$
D_{i} \Perp Y_{0 i}, Y_{1 i} \mid X_{i}
$$

- Treatment is random, after controlling for covariates X_{i}

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls
■ Homogeneous (constant) treatment effect case is simple

- Assume linear CEF, for each $X_{i}=x$, we have the following regression:

$$
Y_{i}=\alpha+\rho_{r} D_{i}+X_{i}^{\prime} \gamma+\nu_{i}
$$

- Regression coefficient ρ_{r} is the treatment effect

$$
p_{r}=E\left[Y_{i} \mid X_{i}, D_{i}=1\right]-E\left[Y_{i} \mid X_{i}, D_{i}=0\right]=E\left[Y_{1 i}-Y_{0 i}\right]
$$

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls

- Homogeneous (constant) treatment effect case is simple
- Assume linear CEF, for each $X_{i}=x$, we have the following regression:

$$
\begin{equation*}
Y_{i}=\alpha+\rho_{r} D_{i}+X_{i}^{\prime} \gamma+\nu_{i} \tag{13}
\end{equation*}
$$

- Regression coefficient ρ_{r} is the treatment effect

$$
\rho_{r}=E\left[Y_{i} \mid X_{i}, D_{i}=1\right]-E\left[Y_{i} \mid X_{i}, D_{i}=0\right]=E\left[Y_{1 i}-Y_{0 i}\right]
$$

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls

- Homogeneous (constant) treatment effect case is simple
- Assume linear CEF, for each $X_{i}=x$, we have the following regression:

$$
\begin{equation*}
Y_{i}=\alpha+\rho_{r} D_{i}+X_{i}^{\prime} \gamma+\nu_{i} \tag{13}
\end{equation*}
$$

- Regression coefficient ρ_{r} is the treatment effect

$$
\rho_{r}=E\left[Y_{i} \mid X_{i}, D_{i}=1\right]-E\left[Y_{i} \mid X_{i}, D_{i}=0\right]=E\left[Y_{1 i}-Y_{0 i}\right]
$$

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls

- Heterogeneous treatment effect case is more complicated
- Let δ_{x} be the within group ATE:
$\delta_{X}=E\left[Y_{i} \mid X_{i}, D i=1\right]-E\left[Y_{i} \mid X_{i}, D i=0\right]=E\left[Y_{1 i} \mid X_{i}, D i=1\right]-E\left[Y_{0 i} \mid X_{i}, D_{i}=1\right]$
- It can be shown that p_{r} is the treatment-variance weighted average of δ_{x}

- Proof see MHE Chapter 3.3.1
- Important! How to understand/interpret equation (14)? Give me an example,

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls

- Heterogeneous treatment effect case is more complicated
- Let δ_{x} be the within group ATE:

$$
\delta_{X}=E\left[Y_{i} \mid X_{i}, D i=1\right]-E\left[Y_{i} \mid X_{i}, D i=0\right]=E\left[Y_{1 i} \mid X_{i}, D i=1\right]-E\left[Y_{0 i} \mid X_{i}, D_{i}=1\right]
$$

- It can be shown that ρ_{r} is the treatment-variance weighted average of δ_{x}

- Proof see MHE Chapter 3.3.1
- Imnortant! How to understand/interpret equation (14)? Give me an example

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls

- Heterogeneous treatment effect case is more complicated
- Let δ_{x} be the within group ATE:

$$
\delta_{x}=E\left[Y_{i} \mid X_{i}, D i=1\right]-E\left[Y_{i} \mid X_{i}, D i=0\right]=E\left[Y_{1 i} \mid X_{i}, D i=1\right]-E\left[Y_{0 i} \mid X_{i}, D_{i}=1\right]
$$

- It can be shown that ρ_{r} is the treatment-variance weighted average of δ_{x} :

$$
\begin{equation*}
\rho_{r}=\frac{E\left[\sigma_{D}^{2}\left(X_{i}\right) \delta_{x}\right]}{E\left[\sigma_{D}^{2}\left(X_{i}\right)\right]} \tag{14}
\end{equation*}
$$

- Proof see MHE Chapter 3.3.1
- Important How to understand/interpret equation (14)? Give me an example,

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls

- Heterogeneous treatment effect case is more complicated
- Let δ_{x} be the within group ATE:

$$
\delta_{x}=E\left[Y_{i} \mid X_{i}, D i=1\right]-E\left[Y_{i} \mid X_{i}, D i=0\right]=E\left[Y_{1 i} \mid X_{i}, D i=1\right]-E\left[Y_{0 i} \mid X_{i}, D_{i}=1\right]
$$

- It can be shown that ρ_{r} is the treatment-variance weighted average of δ_{x} :

$$
\begin{equation*}
\rho_{r}=\frac{E\left[\sigma_{D}^{2}\left(X_{i}\right) \delta_{x}\right]}{E\left[\sigma_{D}^{2}\left(X_{i}\right)\right]} \tag{14}
\end{equation*}
$$

■ Proof see MHE Chapter 3.3.1

- Important! How to understand/interpret equation (14)? Give me an example

Regression, CEF and Causal Inference

Regression and Causality
Case 2: We assume randomization after controls

- Heterogeneous treatment effect case is more complicated
- Let δ_{x} be the within group ATE:

$$
\delta_{x}=E\left[Y_{i} \mid X_{i}, D i=1\right]-E\left[Y_{i} \mid X_{i}, D i=0\right]=E\left[Y_{1 i} \mid X_{i}, D i=1\right]-E\left[Y_{0 i} \mid X_{i}, D_{i}=1\right]
$$

- It can be shown that ρ_{r} is the treatment-variance weighted average of δ_{x} :

$$
\begin{equation*}
\rho_{r}=\frac{E\left[\sigma_{D}^{2}\left(X_{i}\right) \delta_{x}\right]}{E\left[\sigma_{D}^{2}\left(X_{i}\right)\right]} \tag{14}
\end{equation*}
$$

■ Proof see MHE Chapter 3.3.1

- Important! How to understand/interpret equation (14)? Give me an example

Regression, CEF and Causal Inference

Regression, CEF and Causal Inference

- Homework: What is the implication of expression (14) when unconditional independence holds (Like in an RCT)? That is, when $D \Perp Y_{1 i}, Y_{0 i}$?

Regression, CEF and Causal Inference

Let's compare assumptions of Regression, CEF and Causal Model

Regression, CEF and Causal Inference

Let's compare assumptions of Regression, CEF and Causal Model

Regression, CEF and Causal Inference

Let's compare assumptions of Regression, CEF and Causal Model

- $y=f(D)+e$
- Linear Regression: $f(D)=\beta D, E(D e)=0$ Uncorrelated
- CEF: $E(e \mid D)=0$ Mean Independence
- Causal Model: $e \Perp D \quad\left(D_{i} \Perp y_{0 i}, y_{1 i}\right)$ Independence
- Tips: When D is dummy, linear regression is CEF

Regression, CEF and Causal Inference

Let's compare assumptions of Regression, CEF and Causal Model

- $y=f(D)+e$

■ Linear Regression: $f(D)=\beta D, E(D e)=0$ Uncorrelated

- CEF: $E(e \mid D)=0$ Mean Independence
- Causal Model: $e \Perp D \quad\left(D_{i} \Perp y_{0 i}, y_{1 i}\right)$ Independence
- Tips: When D is dummy, linear regression is CEF

Regression, CEF and Causal Inference

Let's compare assumptions of Regression, CEF and Causal Model

- $y=f(D)+e$

■ Linear Regression: $f(D)=\beta D, E(D e)=0$ Uncorrelated

- CEF: $E(e \mid D)=0$ Mean Independence
- Causal Model: e \perp D $\left(D_{i} \Perp y_{0 i}, y_{1 i}\right)$ Independence
- Tips: When D is dummy, linear regression is CEF

Regression, CEF and Causal Inference

Let's compare assumptions of Regression, CEF and Causal Model

- $y=f(D)+e$

■ Linear Regression: $f(D)=\beta D, E(D e)=0$ Uncorrelated

- CEF: $E(e \mid D)=0$ Mean Independence
- Causal Model: e $\Perp \quad\left(D_{i} \Perp y_{0 i}, y_{1 i}\right)$ Independence
- Tips: When D is dummy, linear regression is CEF

Regression, CEF and Causal Inference

Let's compare assumptions of Regression, CEF and Causal Model

- $y=f(D)+e$

■ Linear Regression: $f(D)=\beta D, E(D e)=0$ Uncorrelated

- CEF: $E(e \mid D)=0$ Mean Independence
- Causal Model: e $\Perp \quad\left(D_{i} \Perp y_{0 i}, y_{1 i}\right)$ Independence
- Tips: When D is dummy, linear regression is CEF

Regression, CEF and Causal Inference

Main takeaways from this part

Regression, CEF and Causal Inference

Main takeaways from this part

Regression, CEF and Causal Inference

Main takeaways from this part

- Strength of assumptions regarding unobservable e Causal model (CIA) > CEF (Mean Independence) > Linear regression (Uncorrelated)
- CEF is the best predictor of Y given X
- Linear regression is the best linear predictor of Y given X
- Linear regression is the best linear approximation of CEF
- Under CIA and homogeneous TE, regression coefficient is the TE
- Under CIA and heterogeneous TE, regression coefficient is the treatment-variance weighted average of group ATE

Regression, CEF and Causal Inference

Main takeaways from this part

- Strength of assumptions regarding unobservable e Causal model (CIA) > CEF (Mean Independence) > Linear regression (Uncorrelated)
- CEF is the best predictor of Y given X
- Linear regression is the best linear predictor of Y given X
- Linear regression is the best linear approximation of CEF
- Under CIA and homogeneous TE, regression coefficient is the TE
- Under CIA and heterogeneous TE, regression coefficient is the treatment-variance weighted average of group ATE

Regression, CEF and Causal Inference

Main takeaways from this part

- Strength of assumptions regarding unobservable e Causal model (CIA) > CEF (Mean Independence) > Linear regression (Uncorrelated)
- CEF is the best predictor of Y given X
- Linear regression is the best linear predictor of Y given X
- Linear regression is the best linear approximation of CEF
- Under CIA and homogeneous TE, regression coefficient is the TE
- Under CIA and heterogeneous TE, regression coefficient is the treatment-variance weighted average of group ATE

Regression, CEF and Causal Inference

Main takeaways from this part

- Strength of assumptions regarding unobservable e Causal model (CIA) > CEF (Mean Independence) > Linear regression (Uncorrelated)
- CEF is the best predictor of Y given X
- Linear regression is the best linear predictor of Y given X
- Linear regression is the best linear approximation of CEF
- Under CIA and homogeneous TE, regression coefficient is the TE
- Under CIA and heterogeneous TE, regression coefficient is the treatment-variance weighted average of group ATE

Regression, CEF and Causal Inference

Main takeaways from this part
■ Strength of assumptions regarding unobservable e Causal model (CIA) > CEF (Mean Independence) > Linear regression (Uncorrelated)

- CEF is the best predictor of Y given X
- Linear regression is the best linear predictor of Y given X
- Linear regression is the best linear approximation of CEF

■ Under CIA and homogeneous TE, regression coefficient is the TE

- Under CIA and heterogeneous TE, regression coefficient is the treatment-variance weighted average of group ATE

Regression, CEF and Causal Inference

Main takeaways from this part

- Strength of assumptions regarding unobservable e Causal model (CIA) > CEF (Mean Independence) > Linear regression (Uncorrelated)
- CEF is the best predictor of Y given X
- Linear regression is the best linear predictor of Y given X
- Linear regression is the best linear approximation of CEF

■ Under CIA and homogeneous TE, regression coefficient is the TE
■ Under CIA and heterogeneous TE, regression coefficient is the treatment-variance weighted average of group ATE

Simpson Paradox, Omitted Variables and Bad Controls

Simpson Paradox, Omitted Variables and Bad Controls

- Consider two treatments A and B for a disease (COVID)
- We examine the effect of the treatments by patients' conditions (mild/severe)
- We have the death rate by treatments and conditions as:

	Mild	Severe	Total
A	$15 \%(210 / 1400)$	$30 \%(30 / 100)$	$16 \%(240 / 1500)$
B	$10 \%(5 / 50)$	$20 \%(100 / 500)$	$19 \%(105 / 550)$

- Total death rate: $\mathrm{A}<\mathrm{B}$
- Death rate within condition group: $\mathrm{A}>\mathrm{B}$

Simpson Paradox, Omitted Variables and Bad Controls

- Consider two treatments A and B for a disease (COVID)
- We examine the effect of the treatments by patients' conditions (mild/severe)
- We have the death rate by treatments and conditions as:

- Total death rate: $A<B$
- Death rate within condition group: $A>B$

Simpson Paradox, Omitted Variables and Bad Controls

- Consider two treatments A and B for a disease (COVID)
- We examine the effect of the treatments by patients' conditions (mild/severe)
- We have the death rate by treatments and conditions as:

	Mild	Severe	Total
A	$15 \%(210 / 1400)$	$30 \%(30 / 100)$	$16 \%(240 / 1500)$
B	$10 \%(5 / 50)$	$20 \%(100 / 500)$	$19 \%(105 / 550)$

- Total death rate: $\mathrm{A}<\mathrm{B}$
- Death rate within condition group: $A>B$

Simpson Paradox, Omitted Variables and Bad Controls

- Consider two treatments A and B for a disease (COVID)
- We examine the effect of the treatments by patients' conditions (mild/severe)
- We have the death rate by treatments and conditions as:

	Mild	Severe	Total
A	$15 \%(210 / 1400)$	$30 \%(30 / 100)$	$16 \%(240 / 1500)$
B	$10 \%(5 / 50)$	$20 \%(100 / 500)$	$19 \%(105 / 550)$

- Total death rate: $\mathrm{A}<\mathrm{B}$
- Death rate within condition group: $\mathrm{A}>\mathrm{B}$

Simpson Paradox, Omitted Variables and Bad Controls

- Consider two treatments A and B for a disease (COVID)
- We examine the effect of the treatments by patients' conditions (mild/severe)

■ We have the death rate by treatments and conditions as:

	Mild	Severe	Total
A	$15 \%(210 / 1400)$	$30 \%(30 / 100)$	$16 \%(240 / 1500)$
B	$10 \%(5 / 50)$	$20 \%(100 / 500)$	$19 \%(105 / 550)$

- Total death rate: $\mathrm{A}<\mathrm{B}$
- Death rate within condition group: $\mathrm{A}>\mathrm{B}$

Simpson Paradox, Omitted Variables and Bad Controls

Simpson Paradox, Omitted Variables and Bad Controls

- Which one is better? A or B? \Leftrightarrow Should we control for condition (C)?
- It depends on the causal structure!

Simpson Paradox, Omitted Variables and Bad Controls

- Which one is better? A or B? \Leftrightarrow Should we control for condition (C)?
- It depends on the causal structure!

Simpson Paradox, Omitted Variables and Bad Controls

Case 1: When condition C is a cause of treatment T

Simpson Paradox, Omitted Variables and Bad Controls

Case 1: When condition C is a cause of treatment T

Simpson Paradox, Omitted Variables and Bad Controls

Case 1: When condition C is a cause of treatment T

■ C causes T and Y; T causes Y

- C is a pre-determined variable to T
- We should control for $C \Rightarrow B$ is better

■ If we do not control for $C \Rightarrow$ Omitted Variable Bias

Simpson Paradox, Omitted Variables and Bad Controls

Case 1: When condition C is a cause of treatment T

- C causes T and Y; T causes Y
- C is a pre-determined variable to T
- We should control for $C \Rightarrow B$ is better

■ If we do not control for $C \Rightarrow$ Omitted Variable Bias

Simpson Paradox, Omitted Variables and Bad Controls

Case 1: When condition C is a cause of treatment T

- C causes T and Y; T causes Y
- C is a pre-determined variable to T
- We should control for $C \Rightarrow B$ is better
- If we do not control for $C \Rightarrow$ Omitted Variable Bias

Simpson Paradox, Omitted Variables and Bad Controls

Case 1: When condition C is a cause of treatment T

- C causes T and Y; T causes Y
- C is a pre-determined variable to T
- We should control for $C \Rightarrow B$ is better

■ If we do not control for $C \Rightarrow$ Omitted Variable Bias

Simpson Paradox, Omitted Variables and Bad Controls

Case 2: When treatment T is a cause of condition C

Simpson Paradox, Omitted Variables and Bad Controls

Case 2: When treatment T is a cause of condition C

Simpson Paradox, Omitted Variables and Bad Controls

Case 2: When treatment T is a cause of condition C

- T causes C and Y; C causes Y
- C is a post-determined variable
- We should not control for $C \Rightarrow A$ is better
- If we do control for $C \Rightarrow$ Bad Control Problem
- Never control a channel!!!
- We will discuss this issue in detail when talking about DAG

Simpson Paradox, Omitted Variables and Bad Controls

Case 2: When treatment T is a cause of condition C

- T causes C and Y; C causes Y
- C is a post-determined variable
- We should not control for $C \Rightarrow A$ is better
- If we do control for $C \Rightarrow$ Bad Control Problem

■ Never control a channel!!!

- We will discuss this issue in detail when talking about DAG

Simpson Paradox, Omitted Variables and Bad Controls

Case 2: When treatment T is a cause of condition C

- T causes C and Y; C causes Y
- C is a post-determined variable
- We should not control for $C \Rightarrow A$ is better
- If we do control for $C \Rightarrow$ Bad Control Problem
- Never control a channel!!!
- We will discuss this issue in detail when talking about DAG

Simpson Paradox, Omitted Variables and Bad Controls

Case 2: When treatment T is a cause of condition C

- T causes C and Y; C causes Y
- C is a post-determined variable
- We should not control for $C \Rightarrow A$ is better
- If we do control for $C \Rightarrow$ Bad Control Problem
- Never control a channel!!!
- We will discuss this issue in detail when talking about DAG

Simpson Paradox, Omitted Variables and Bad Controls

Case 2: When treatment T is a cause of condition C

- T causes C and Y; C causes Y
- C is a post-determined variable
- We should not control for $C \Rightarrow A$ is better
- If we do control for $C \Rightarrow$ Bad Control Problem
- Never control a channel!!!
- We will discuss this issue in detail when talking about DAG

Simpson Paradox, Omitted Variables and Bad Controls

Case 2: When treatment T is a cause of condition C

- T causes C and Y; C causes Y
- C is a post-determined variable
- We should not control for $C \Rightarrow A$ is better
- If we do control for $C \Rightarrow$ Bad Control Problem
- Never control a channel!!!
- We will discuss this issue in detail when talking about DAG

Simpson Paradox, Omitted Variables and Bad Controls

Simpson Paradox, Omitted Variables and Bad Controls

- Quiz: Should we control for X?
- $\mathrm{Y}=$ wage, $\mathrm{D}=$ education, $\mathrm{X}=$ natural ability
- $\mathrm{Y}=$ =wage, $\mathrm{D}=$ =education, $\mathrm{X}=$ labor participation decision
- $Y=G D P$ at $t+1, D=R \& D$ expenditure at $t, X=$ trade volume at $t+1$
- Rule of thumb: Control pre-determined variables, not post-determined ones

Simpson Paradox, Omitted Variables and Bad Controls

- Quiz: Should we control for X ?
- $\mathrm{Y}=$ wage, $\mathrm{D}=$ education, $\mathrm{X}=$ natural ability
- $Y=$ wage, $D=$ education, $X=$ labor participation decision
- $\mathrm{Y}=\mathrm{GDP}$ at $\mathrm{t}+1, \mathrm{D}=\mathrm{R} \& \mathrm{D}$ expenditure at $\mathrm{t}, \mathrm{X}=$ trade volume at $\mathrm{t}+1$
- Rule of thumb: Control pre-determined variables, not post-determined ones

Simpson Paradox, Omitted Variables and Bad Controls

- Quiz: Should we control for X ?
- $\mathrm{Y}=$ wage, $\mathrm{D}=$ education, $\mathrm{X}=$ natural ability
- $\mathrm{Y}=$ wage, $\mathrm{D}=$ education, $\mathrm{X}=$ labor participation decision
- $\mathrm{Y}=\mathrm{GDP}$ at $\mathrm{t}+1, \mathrm{D}=\mathrm{R} \& \mathrm{D}$ expenditure at $\mathrm{t}, \mathrm{X}=$ trade volume at $\mathrm{t}+1$
- Rule of thumb: Control pre-determined variables, not post-determined ones

Simpson Paradox, Omitted Variables and Bad Controls

- Quiz: Should we control for X ?
- $\mathrm{Y}=$ wage, $\mathrm{D}=$ education, $\mathrm{X}=$ natural ability
- $\mathrm{Y}=$ wage, $\mathrm{D}=$ education, $\mathrm{X}=$ labor participation decision
- $\mathrm{Y}=\mathrm{GDP}$ at $\mathrm{t}+1, \mathrm{D}=\mathrm{R} \& \mathrm{D}$ expenditure at $\mathrm{t}, \mathrm{X}=$ trade volume at $\mathrm{t}+1$
- Rule of thumb: Control pre-determined variables, not post-determined ones

Simpson Paradox, Omitted Variables and Bad Controls

- Quiz: Should we control for X ?
- $\mathrm{Y}=$ wage, $\mathrm{D}=$ education, $\mathrm{X}=$ natural ability
- $\mathrm{Y}=$ wage, $\mathrm{D}=$ education, $\mathrm{X}=$ labor participation decision
- $\mathrm{Y}=\mathrm{GDP}$ at $\mathrm{t}+1, \mathrm{D}=\mathrm{R} \& \mathrm{D}$ expenditure at $\mathrm{t}, \mathrm{X}=$ trade volume at $\mathrm{t}+1$
- Rule of thumb: Control pre-determined variables, not post-determined ones

Matching

Matching

- Regression is only one of the tools we use to tackle causal effect
- Matching is another common tool
- It is simple and non-parametric
- Basic idea
- Regression is a particular sort of weighted matching estimator

Matching

- Regression is only one of the tools we use to tackle causal effect
- Matching is another common tool
- It is simple and non-parametric
- Basic idea
- Regression is a particular sort of weighted matching estimator

Matching

- Regression is only one of the tools we use to tackle causal effect
- Matching is another common tool
- It is simple and non-parametric
- Basic idea
- Regression is a particular sort of weighted matching estimator

Matching

- Regression is only one of the tools we use to tackle causal effect
- Matching is another common tool
- It is simple and non-parametric
- Basic idea
- (1) Compare treated and control units with same covariates;
- (2) Put together to produce a single overall weighted average treatment effect
- Regression is a particular sort of weighted matching estimator

Matching

- Regression is only one of the tools we use to tackle causal effect
- Matching is another common tool
- It is simple and non-parametric
- Basic idea
- (1) Compare treated and control units with same covariates;
- (2) Put together to produce a single overall weighted average treatment effect
- Regression is a particular sort of weighted matching estimator

Matching

- Regression is only one of the tools we use to tackle causal effect
- Matching is another common tool
- It is simple and non-parametric
- Basic idea
- (1) Compare treated and control units with same covariates;
- (2) Put together to produce a single overall weighted average treatment effect
- Regression is a particular sort of weighted matching estimator

Matching

- Regression is only one of the tools we use to tackle causal effect
- Matching is another common tool
- It is simple and non-parametric
- Basic idea
- (1) Compare treated and control units with same covariates;
- (2) Put together to produce a single overall weighted average treatment effect

■ Regression is a particular sort of weighted matching estimator

Matching

Matching

- Assume that for treatment D_{i}, we have CIA: $Y_{0 i}, Y_{1 i} \Perp D_{i} \mid X_{i}$
- We can express treatment on the treated (TOT) as:

$$
\begin{aligned}
\delta_{T O T} & =E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1\right]=E\left[E\left[Y_{1 i}-Y_{0 i} \mid X_{i}, D_{i}=1\right] \mid D_{i}=1\right] \\
& =E\left[E\left[Y_{1 i} \mid X_{i}, D_{i}=1\right]-E\left[Y_{0 i} \mid X_{i}, D_{i}=1\right] \mid D_{i}=1\right] \\
& =E\left[E\left[Y_{i} \mid X_{i}, D_{i}=1\right]-E\left[Y_{i} \mid X_{i}, D_{i}=0\right] \mid D_{i}=1\right] \\
& =E\left[\delta_{x} \mid D_{i}=1\right]
\end{aligned}
$$

- The corresponding matching estimator (sample analog) is:

$$
\hat{\delta}_{\text {TOT }}=\sum \hat{\delta}_{x} \hat{P}\left(Y_{i}=x \mid D_{i}=1\right)
$$

- Similarly, we can derive a matching estimator for ATE:

Matching

■ Assume that for treatment D_{i}, we have CIA: $Y_{0 i}, Y_{1 i} \Perp D_{i} \mid X_{i}$

- We can express treatment on the treated (TOT) as:

$$
\begin{aligned}
\delta_{\text {TOT }} & =E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1\right]=E\left[E\left[Y_{1 i}-Y_{0 i} \mid X_{i}, D_{i}=1\right] \mid D_{i}=1\right] \\
& =E\left[E\left[Y_{1 i} \mid X_{i}, D_{i}=1\right]-E\left[Y_{0 i} \mid X_{i}, D_{i}=1\right] \mid D_{i}=1\right] \\
& =E\left[E\left[Y_{i} \mid X_{i}, D_{i}=1\right]-E\left[Y_{i} \mid X_{i}, D_{i}=0\right] \mid D_{i}=1\right] \\
& =E\left[\delta_{x} \mid D_{i}=1\right]
\end{aligned}
$$

- The corresponding matching estimator (sample analog) is:

- Similarly, we can derive a matching estimator for ATE:

Matching

- Assume that for treatment D_{i}, we have CIA: $Y_{0 i}, Y_{1 i} \Perp D_{i} \mid X_{i}$

■ We can express treatment on the treated (TOT) as:

$$
\begin{aligned}
\delta_{\text {TOT }} & =E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1\right]=E\left[E\left[Y_{1 i}-Y_{0 i} \mid X_{i}, D_{i}=1\right] \mid D_{i}=1\right] \\
& =E\left[E\left[Y_{1 i} \mid X_{i}, D_{i}=1\right]-E\left[Y_{0 i} \mid X_{i}, D_{i}=1\right] \mid D_{i}=1\right] \\
& =E\left[E\left[Y_{i} \mid X_{i}, D_{i}=1\right]-E\left[Y_{i} \mid X_{i}, D_{i}=0\right] \mid D_{i}=1\right] \\
& =E\left[\delta_{x} \mid D_{i}=1\right]
\end{aligned}
$$

- The corresponding matching estimator (sample analog) is:

$$
\hat{\delta}_{\text {TOT }}=\sum_{x} \hat{\delta}_{x} \hat{P}\left(X_{i}=x \mid D_{i}=1\right)
$$

- Similarly, we can derive a matching estimator for ATE:

Matching

- Assume that for treatment D_{i}, we have CIA: $Y_{0 i}, Y_{1 i} \Perp D_{i} \mid X_{i}$

■ We can express treatment on the treated (TOT) as:

$$
\begin{aligned}
\delta_{\text {TOT }} & =E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1\right]=E\left[E\left[Y_{1 i}-Y_{0 i} \mid X_{i}, D_{i}=1\right] \mid D_{i}=1\right] \\
& =E\left[E\left[Y_{1 i} \mid X_{i}, D_{i}=1\right]-E\left[Y_{0 i} \mid X_{i}, D_{i}=1\right] \mid D_{i}=1\right] \\
& =E\left[E\left[Y_{i} \mid X_{i}, D_{i}=1\right]-E\left[Y_{i} \mid X_{i}, D_{i}=0\right] \mid D_{i}=1\right] \\
& =E\left[\delta_{x} \mid D_{i}=1\right]
\end{aligned}
$$

- The corresponding matching estimator (sample analog) is:

$$
\hat{\delta}_{T O T}=\sum_{x} \hat{\delta}_{x} \hat{P}\left(X_{i}=x \mid D_{i}=1\right)
$$

- Similarly, we can derive a matching estimator for ATE:

$$
\hat{\delta}_{A T E}=\sum_{x} \hat{\delta}_{x} \hat{P}\left(X_{i}=x\right)
$$

Matching vs Regression

Regression is one of the matching estimators!

Matching vs Regression

Regression is one of the matching estimators!

Matching vs Regression

Regression is one of the matching estimators!

- Matching estimator of TOT: $\hat{\delta}_{\text {TOT }}=\sum_{x} \hat{\delta}_{x} P\left(X_{i}=x \mid D_{i}=1\right)$ Weighted by probability mass for treated group
- Matching estimator of ATE: $\hat{\delta}_{\text {ATE }}=\sum_{x} \hat{\delta}_{x} P\left(X_{i}=x\right)$ Weighted by probability mass for all units
= Regression estimator Weighted by treatment variances

Matching vs Regression

Regression is one of the matching estimators!

- Matching estimator of TOT: $\hat{\delta}_{\text {TOT }}=\sum_{x} \hat{\delta}_{x} P\left(X_{i}=x \mid D_{i}=1\right)$ Weighted by probability mass for treated group
- Matching estimator of ATE: $\hat{\delta}_{A T E}=\sum_{x} \hat{\delta}_{x} P\left(X_{i}=x\right)$ Weighted by probability mass for all units
- Regression estimator

Weighted by treatment variances

Matching vs Regression

Regression is one of the matching estimators!

- Matching estimator of TOT: $\hat{\delta}_{\text {TOT }}=\sum_{x} \hat{\delta}_{x} P\left(X_{i}=x \mid D_{i}=1\right)$ Weighted by probability mass for treated group
- Matching estimator of ATE: $\hat{\delta}_{A T E}=\sum_{x} \hat{\delta}_{x} P\left(X_{i}=x\right)$ Weighted by probability mass for all units
- Regression estimator: $\frac{\sum_{x} \hat{\sigma}_{D}^{2}\left(X_{i}\right) \hat{\delta}_{x}}{\sum_{x} \hat{\sigma}_{D}^{2}\left(X_{i}\right)}$

Weighted by treatment variances

Matching vs Regression

Matching vs Regression

- Homework: Explain the meaning of the weights in these three estimators. To which observation/cell are they going to give the largest weights?

Propensity Score Matching

Propensity Score Matching

■ Assume that we want to estimate college premium on wages

- To have CIA, we need a lot of controls: Gender, race, nationality, birth weight, IQ, parents' education, parents' income
- Curse of dimensionality: There are too many dimensions in X_{i}
- We will not have enough observations for each value of X_{i} to estimate $\hat{\delta}_{\lambda}$
- Maybe you have 10,000 observations
- But only 2 of them are Han boys with IQ 150, family income 100,000 RMB/year parents are high-school educated
- Very hard to implement the matching estimator (but regression is still feasible)

Propensity Score Matching

- Assume that we want to estimate college premium on wages
- To have CIA, we need a lot of controls:

Gender, race, nationality, birth weight, IQ, parents' education, parents' income...

- Curse of dimensionality: There are too many dimensions in
- We will not have enough observations for each value of X_{i} to estimate $\hat{\delta}_{x}$
- Maybe you have 10,000 observations
- But only 2 of them are Han boys with IQ 150, family income 100,000 RMB/year parents are high-school educated

■ Very hard to implement the matching estimator (but regression is still feasible)

Propensity Score Matching

- Assume that we want to estimate college premium on wages
- To have CIA, we need a lot of controls:

Gender, race, nationality, birth weight, IQ, parents' education, parents' income...

- Curse of dimensionality: There are too many dimensions in X_{i}
- We will not have enough observations for each value of X_{i} to estimate δ_{x}
- Maybe you have 10,000 observations
- But only 2 of them are Han boys with IQ 150, family income 100,000 RMB/year parents are high-school educated
- Very hard to implement the matching estimator (but regression is still feasible)

Propensity Score Matching

- Assume that we want to estimate college premium on wages
- To have CIA, we need a lot of controls:

Gender, race, nationality, birth weight, IQ, parents' education, parents' income...

- Curse of dimensionality: There are too many dimensions in X_{i}
- We will not have enough observations for each value of X_{i} to estimate $\hat{\delta}_{x}$
- Maybe you have 10,000 observations
- But only 2 of them are Han boys with IQ 150, family income 100,000 RMB/year, parents are high-school educated
- Very hard to implement the matching estimator (but regression is still feasible)

Propensity Score Matching

- Assume that we want to estimate college premium on wages
- To have CIA, we need a lot of controls:

Gender, race, nationality, birth weight, IQ, parents' education, parents' income...

- Curse of dimensionality: There are too many dimensions in X_{i}
- We will not have enough observations for each value of X_{i} to estimate $\hat{\delta}_{x}$
- Maybe you have 10,000 observations
- But only 2 of them are Han boys with IQ 150, family income 100,000 RMB/year, parents are high-school educated
- Very hard to implement the matching estimator (but regression is still feasible)

Propensity Score Matching

- Assume that we want to estimate college premium on wages
- To have CIA, we need a lot of controls: Gender, race, nationality, birth weight, IQ, parents' education, parents' income...
- Curse of dimensionality: There are too many dimensions in X_{i}
- We will not have enough observations for each value of X_{i} to estimate $\hat{\delta}_{x}$
- Maybe you have 10,000 observations

■ But only 2 of them are Han boys with IQ 150, family income 100,000 RMB/year, parents are high-school educated

- Very hard to implement the matching estimator (but regression is still feasible)

Propensity Score Matching

- Assume that we want to estimate college premium on wages
- To have CIA, we need a lot of controls: Gender, race, nationality, birth weight, IQ, parents' education, parents' income...
- Curse of dimensionality: There are too many dimensions in X_{i}
- We will not have enough observations for each value of X_{i} to estimate $\hat{\delta}_{x}$
- Maybe you have 10,000 observations

■ But only 2 of them are Han boys with IQ 150, family income 100,000 RMB/year, parents are high-school educated
■ Very hard to implement the matching estimator (but regression is still feasible)

Propensity Score Matching

Propensity Score Matching

■ Propensity Score Matching (PSM) is a simple method to reduce the dimensionality

- Assumption 1 (CIA): $Y_{1 i}, Y_{0 i} \Perp D_{i} \mid X_{i}$

■ Assumption 2 (Overlap): $0<P\left(D_{i}=1 \mid X_{i}\right)<1$

- PSM Theorem: If Assumptions 1 and 2 hold, we have $Y_{1 i}, Y_{0 i} \Perp D_{i} \mid P\left(X_{i}\right)$, where $P\left(X_{i}\right)=P\left(D_{i}=1 \mid X_{i}\right)$
- We are fine, as long as we control for the propensity score $P(X)$

Propensity Score Matching

■ Propensity Score Matching (PSM) is a simple method to reduce the dimensionality
■ Assumption 1 (CIA): $Y_{1 i}, Y_{0 i} \Perp D_{i} \mid X_{i}$

- Assumption 2 (Overlap): $0<P\left(D_{i}=1 \mid X_{i}\right)<1$
- PSM Theorem: If Assumptions 1 and 2 hold, we have $Y_{1 i}, Y_{0 i} \Perp D_{i} \mid P\left(X_{i}\right)$, where $P\left(X_{i}\right)=P\left(D_{i}=1 \mid X_{i}\right)$
- We are fine, as long as we control for the propensity score $P(X)$

Propensity Score Matching

■ Propensity Score Matching (PSM) is a simple method to reduce the dimensionality

- Assumption 1 (CIA): $Y_{1 i}, Y_{0 i} \Perp D_{i} \mid X_{i}$

■ Assumption 2 (Overlap): $0<P\left(D_{i}=1 \mid X_{i}\right)<1$

- PSM Theorem: If Assumptions 1 and 2 hold, we have $Y_{1 i}, Y_{0 i} \Perp D_{i} \mid P\left(X_{i}\right)$, where $P\left(X_{i}\right)=P\left(D_{i}=1 \mid X_{i}\right)$
- We are fine, as long as we control for the propensity score $P(X)$

Propensity Score Matching

■ Propensity Score Matching (PSM) is a simple method to reduce the dimensionality

- Assumption 1 (CIA): $Y_{1 i}, Y_{0 i} \Perp D_{i} \mid X_{i}$

■ Assumption 2 (Overlap): $0<P\left(D_{i}=1 \mid X_{i}\right)<1$
■ PSM Theorem: If Assumptions 1 and 2 hold, we have $Y_{1 i}, Y_{0 i} \Perp D_{i} \mid P\left(X_{i}\right)$, where $P\left(X_{i}\right)=P\left(D_{i}=1 \mid X_{i}\right)$

- We are fine, as long as we control for the propensity score $P(X)$

Propensity Score Matching

■ Propensity Score Matching (PSM) is a simple method to reduce the dimensionality

- Assumption 1 (CIA): $Y_{1 i}, Y_{0 i} \Perp D_{i} \mid X_{i}$

■ Assumption 2 (Overlap): $0<P\left(D_{i}=1 \mid X_{i}\right)<1$
■ PSM Theorem: If Assumptions 1 and 2 hold, we have $Y_{1 i}, Y_{0 i} \Perp D_{i} \mid P\left(X_{i}\right)$, where $P\left(X_{i}\right)=P\left(D_{i}=1 \mid X_{i}\right)$

- We are fine, as long as we control for the propensity score $P(X)$

Propensity Score Matching

Propensity Score Matching

- Go back to the college premium example
- Instead of matching across all controls (gender, family income...)
- We can match for the predicted probability $P(X)$ for each person to go to college
- We just replace all X_{i} with $P\left(X_{i}\right)$ in the matching estimator, and get the PSM estimator

Propensity Score Matching

- Go back to the college premium example

■ Instead of matching across all controls (gender, family income...)

- We can match for the predicted probability $P(X)$ for each person to go to college
- We just replace all X_{i} with $P\left(X_{i}\right)$ in the matching estimator, and get the PSM estimator

Propensity Score Matching

■ Go back to the college premium example
■ Instead of matching across all controls (gender, family income...)

- We can match for the predicted probability $P(X)$ for each person to go to college
- We just replace all X_{i} with $P\left(X_{i}\right)$ in the matching estimator, and get the PSM estimator

Propensity Score Matching

- Go back to the college premium example

■ Instead of matching across all controls (gender, family income...)
■ We can match for the predicted probability $P(X)$ for each person to go to college

- We just replace all X_{i} with $P\left(X_{i}\right)$ in the matching estimator, and get the PSM estimator.

Regression vs PSM

Regression vs PSM

■ Regression usually does not suffer from the curse of dimensionality

- Since we are regularizing controls by linear function (next class)
- We can combine regression and PSM by run a regression controling for propensity score (but not each variable)

Regression vs PSM

■ Regression usually does not suffer from the curse of dimensionality

- Since we are regularizing controls by linear function (next class)
- We can combine regression and PSM by run a regression controling for propensity score (but not each variable)

Regression vs PSM

■ Regression usually does not suffer from the curse of dimensionality
■ Since we are regularizing controls by linear function (next class)

- We can combine regression and PSM by run a regression controling for propensity score (but not each variable)

Regression vs PSM

Regression vs PSM

■ In general, Angrist prefers regression

- Because some parts of the process to implement PSM are not standardized

■ e.g. how to estimate the propensity score $P(X)$? (Logit? LPM? Probit?)
■ PSM CANNOT solve the endogeneity issue!!!!!!!
■ PSM CANNOT solve the endogeneity issue!!!!!!
■ PSM CANNOT solve the endogeneity issue!!!!!!

Regression vs PSM

- In general, Angrist prefers regression
- Because some parts of the process to implement PSM are not standardized
- e.g. how to estimate the propensity score $P(X)$? (Logit? LPM? Probit?)

■ PSM CANNOT solve the endogeneity issue!!!!!!!

- PSM CANNOT solve the endogeneity issue!!!!!!
- PSM CANNOT solve the endogeneity issue!!!!!!

Regression vs PSM

- In general, Angrist prefers regression
- Because some parts of the process to implement PSM are not standardized

■ e.g. how to estimate the propensity score $P(X)$? (Logit? LPM? Probit?)
■ PSM CANNOT solve the endogeneity issue!!!!!!

- PSM CANNOT solve the endogeneity issue!!!!!!

■ PSM CANNOT solve the endogeneitv issue!!!!!!!

Regression vs PSM

- In general, Angrist prefers regression

■ Because some parts of the process to implement PSM are not standardized
■ e.g. how to estimate the propensity score $P(X)$? (Logit? LPM? Probit?)
■ PSM CANNOT solve the endogeneity issue!!!!!!

- PSM CANNOT solve the endogeneity issue!!!!!!
- PSM CANNOT solve the endogeneity issue!!!!!!

Regression vs PSM

- In general, Angrist prefers regression
- Because some parts of the process to implement PSM are not standardized

■ e.g. how to estimate the propensity score $P(X)$? (Logit? LPM? Probit?)
■ PSM CANNOT solve the endogeneity issue!!!!!!
■ PSM CANNOT solve the endogeneity issue!!!!!!

- PSM CANNOT solve the endogeneity issue!!!!!!

Regression vs PSM

- In general, Angrist prefers regression
- Because some parts of the process to implement PSM are not standardized

■ e.g. how to estimate the propensity score $P(X)$? (Logit? LPM? Probit?)
■ PSM CANNOT solve the endogeneity issue!!!!!!
■ PSM CANNOT solve the endogeneity issue!!!!!!
■ PSM CANNOT solve the endogeneity issue!!!!!!

References

Heckman, James J and Edward J Vytlacil. 2007. "Econometric Evaluation of Social Programs, Part I: Causal Models, Structural Models and Econometric Policy Evaluation." Handbook of Econometrics 6:4779-4874.

